4 resultados para Physiographic compartmentalization

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the results of application of SWAN Simulating WAves Nearshore numerical model, OF third generation, which simulates the propagation and dissipation of energy from sea waves, on the north continental shelf at Rio Grande do Norte, to determine the wave climate, calibrate and validate the model, and assess their potential and limitations for the region of interest. After validation of the wave climate, the results were integrated with information from the submarine relief, and plant morphology of beaches and barrier islands systems. On the second phase, the objective was to analyze the evolution of the wave and its interaction with the shallow seabed, from three transverse profiles orientation from N to S, distributed according to the parallel longitudinal, X = 774000-W, 783000-W e 800000-W. Subsequently, it was were extracted the values of directional waves and winds through all the months between november 2010 to november 2012, to analyze the impact of these forces on the movement area, and then understand the behavior of the morphological variations according to temporal year variability. Based on the results of modeling and its integration with correlated data, and planimetric variations of Soledade and Minhoto beach systems and Ponta do Tubarão and Barra do Fernandes barrier islands systems, it was obtained the following conclusions: SWAN could reproduce and determine the wave climate on the north continental shelf at RN, the results show a similar trend for the measurements of temporal variations of significant height (HS, m) and the mean wave period (Tmed, s); however, the results of parametric statistics were low for the estimates of the maximum values in most of the analyzed periods compared data of PT 1 and PT 2 (measurement points), with alternation of significant wave heights, at times overrated with occasional overlap of swell episodes. By analyzing the spatial distribution of the wave climate and its interaction with the underwater compartmentalization, it was concluded that there is interaction of wave propagation with the seafloor, showing change in significant heights whenever it interacts with the seafloor features (beachrocks, symmetric and asymmetric longitudinal dunes, paleochannel, among others) in the regions of outer, middle and inner shelf. And finally, it is concluded that the study of the stability areas allows identifications of the most unstable regions, confirming that the greatest range of variation indicates greater instability and consequent sensitivity to hydrodynamic processes operating in the coastal region, with positive or negative variation, especially at Ponta do Tubarão and Barra do Fernandes barrier islands systems, where they are more susceptible to waves impacts, as evidenced in retreat of the shoreline

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformation bands are structures, developed in porous sandstones, that has small offsets and they are not shown on seismic section. The deformation bands of the pre and synrift sandstones of Araripe Basin were studied in outcrop, macroscopic and microscopic scales. The hierarchical, cinematic and spatial-geometric characteristics, and also the deformational mechanisms acting during its structural evolution were established too. In general, the mesoscopic scale observation allowed to discriminate deformation bands as singles or clusters in three main sets: NNE-SSW dextral; NE-SW normal (sometimes with strike-slip offset); and E-W sinistral; further a bed-parallel deformation bands as a local set. The microscopic characterization allowed to recognize the shearing and cataclastic character of such structures. Through the multi-scale study done in this work we verified that deformation bands analyzed were preferentially developed when sandstones under advanced stage of lithification. We also infer that the geometrical-spatial complexity of these bands, together with the presence of cataclastic matrix, can difficult the migration of fluids in reservoir rocks, resulting on their compartmentalization. Therefore, the study of deformation bands can aid researches about the structural evolution of sedimentary basin, as well as collaborate to understand the hydrodynamic behavior of reservoirs compartmented by these deformational structures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that the catecholamine group is constituted by dopamine, noradrenaline and adrenaline, in which the synthesis is regulated by an enzyme named tyrosine hydroxylase. Thus, 3-hydroxytyramine/dopamine (DA) is a precursor of the noradrenaline and adrenaline synthesis and acts as a neurotransmitter in the central nervous system. The three main nuclei, named the retrorubral field (A8 group), the substantia nigra pars compacta (A9 group) and the ventral tegmental area (A10 group), are arranged in the die-mesencephalic portion and are involved in three complexes circuitries - the mesostriatal, mesolimbic and mesocortical pathways. These pathways are related to behavioral manifestations, motricity, learning, reward and pathologies such as Parkinson’s Disease and Schizophrenia. Thus, the aim of this study was to perform de morphological analysis of the A8, A9 and A10 nuclei of the common marmoset (Callithrix jacchus). The marmoset is a neotropical primate, whose morphological and functional characteristics supports the suitability of use of this animal in biomedical research. Coronal sections of the marmoset brain were submitted to cytoarchitectonic characterization and TH-immunohistochemistry. Based on the morphology of the neurons, it was possible to subdivide the A10 group in seven regions: interfascicular nucleus, raphe rostral linear nucleus and raphe caudal linear nucleus, in the middle line; paranigral and parainterfascicular nucleus, in the middle zone; rostral portion of the ventral tegmental area nucleus and parabrachial pigmented nucleus, located in the dorsolateral portion of the mesencephalic tegmentum. A9 group was divided into four regions: substantia nigra compacta dorsal and ventral tiers; substantia nigra compacta lateral and medial clusters. No subdivisions were founded into A8 group. These results revealed that A8, A9 and A10 are phylogenetically conserved between species, but it’s necessary to expand the studies about this compartmentalization, investigating its occurrence in other primate species or investigating its functional relevance.