5 resultados para Photodynamic theraphy

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) has been proposed as an alternative method for the treatment of biofilm-dependent oral diseases like dental caries. This therapy consists of simultaneous action of a visible light (L) and a photosensitizer (FS) in the presence of oxygen, which leads to production of different reactive oxygen species that can interact with the bacterial cell components, and promote cell death. This study aims to evaluate the antimicrobial action of PDT on oral bacteria in suspension, as well as the formation of mono and multi-species biofilms, in vitro, from a standard strain of Streptococcus mutans (ATCC 25175) and saliva samples, respectively. The dye methylene blue (MB) and toluidine blue (TB) were used at a concentration of 100 mg/ L and activated by halogen light (600 to 750 nm) from a modified hand held photopolymerizer (Ultralux ®, Dabi Atlante, Ribeirão Preto , São Paulo, Brazil.). Planktonic cultures were prepared and submitted to different experimental conditions: 1. PDT using TB 2. PDT using MB, 3. L+ FS- , 4. TB + L - ; 5. MB+ L-; 6. L- FS- (negative control) and 7. administration of 0.12% chlorhexidine digluconate (positive control) (Periogard ®, Colgate-Palmolive Company, New York, USA). The immediate and mediated action of PDT on bacterial suspensions, as well as its effect on biofilm formation were observed from the number of colony-forming units per milliliter (CFU/mL) and measures optical density (OD). The data were statistically analyzed using the Kruskal-Wallis and Mann-Whitney test for the significance level of 5%. According to the results, the PDT showed no antibacterial action on suspensions of S. mutans, regardless of the dye used. PDT with MB activated by halogen light was able to reduce 86.6% CFU/mL multi-species planktonic cultures, however, this reduction was not significant (p > 0.05). PDT showed antibacterial effect, mediate on multi-species planktonic cultures with TB (p < 0.001) and MB (p < 0.001), activated by halogen light. PDT was able to prevent the formation of multispecies biofilm, through the activation of TB by halogen light (p = 0.01). We conclude that activation of the dye toluidine blue and methylene blue, by halogen light (PDT) showed antimicrobial activity, compared to multi-species planktonic cultures prepared from saliva samples

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although photodynamic therapy have been used as a useful tool over the past 30 years in oncology, few clinical trials have been conducted in dentistry. Photodynamic therapy (PDT) uses non - toxic photosensitizers and selective which are administered in target cells followed by local application of visible light, producing reactive oxygen species capable of causing cell death by apoptosis or necrosis, injured the local vasculature, and exert important effects on the im mune system. New generations of photosensitizing agents, such as nanoparticulate phthalocyanines, has shown excellent results in antitumor and antibacterial activity . In this context, the present work constitutes the first clinical protocol of local appli cation of nanoemulsion chloro - aluminum phthalocyanine (AlClFc) followed by irradiation in human gingiva, and analyzed descriptively and comparatively , by means of immunohistochemistry , the expression of RANK , RANKL , OPG and VEGF in a split - mouth model . Eight healthy volunteers with clinical indication for extraction were included in the study . Seven days before the extraction, was injected in the gingiva of participants, 5 μ M of nanoemulsion AlClFc followed by irra diation with diode laser (660nm , 7 J/cm2 ), the contralateral side was used as control. Tissue specimens were removed seven days after the TFD is performed. Tissues sample were divided into two groups (test and con trol groups) for histological and immunohistochemical analysis. Patients were monitored at days, 0, 7, 14 and 30 to assess adverse effects of the therapy. Vascular alterations were seen in gingival samples that received PDT. Areas of edema and vascular con gestion, and intense vascularization were viewed . Additionally, dystrophic calcification in subepithelial region were observed in the test group. The results showed a similar pattern of immunostaining scores of RANK, RANKL and VEGF between the test and co ntrol groups, with no statistically significant difference (p = 0.317, p = 0.777, p = 0 .814, respectively). RANK and RANKL exhibited weak or absent immunostaining in most specimens analyzed. There was n o immunostaining for OPG. VEGF showed moderate to stro ng immunostaining in specimens from the test group. In addition, the clinical study showed that therapy was well tolerated by all patients. Adverse effects were short - time and completely reversible. Taken together, the results presented in this study showe d that PDT mediated by nanoemulsion containing AlClPc is safe for clinical application in gingival tissue and suggests that a strong immunostaining for VEGF after therapy .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) consists of a non-toxic photosensitizing agent (FS) administration followed by a laser source resulting in a sequence of photochemical and photobiological processes that generate reactive oxygen species (ROS) that damaging cells. The present work evaluated the effects of PDT nanoemulsion-aluminum chloride phthalocyanine (AlClFc) mediated on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, which represent indicators involved in oxidative stress and antioxidant defenses. For this purpose, this study used 120 female rats of the Rattus norvegicus species, Wistar race, divided into 5 groups: Healthy (H), with periodontal disease (PD), with periodontal disease and treatment with FS (F), with periodontal disease and treatment with the laser (L); and periodontal disease and treatment with PDT (FL). An experimental model for represent periodontal disease (PD) was induced by ligature (split-mouth). Seven days later the induction of PD, the treatments were instituted according to the groups. In the group treated with PDT was applied 40μl FS (5μM) followed by laser irradiation diode InGaAlP (660nm, 100J / cm2). The rats were sacrificed on the 7th and 28th day after treatment and tissue specimens were removed and subjected to histological, immunohistochemical methods and enzymatic colorimetric measurements with detection by UV / VIS spectroscopy. Inflammatory changes, connective tissue disorganization and alveolar bone loss were displaying in groups with PD induced. The enzyme dosages showed that MDA levels were higher in PD induced groups, with no statistically significant differences (p> 0.05). High levels of GSH were found in groups L (p = 0.028) and FL (p = 0.028) compared with PD group, with statistically significant differences. Immunohistochemistry for SOD showed higher immunostaining in L and FL groups, compared to the PD group without statistically significant differences (p> 0.05). GPx showed lower immunoreactivity in the DP group when compared to the other groups and statistically significant differences were observed between the DPxL groups (p <0.05). TFD administered in this experiment did not induce elevation of MDA levels significantly increased the GSH levels and showed intense immunostaining pada SOD and GPx, showing that this therapy does not accentuated lipid peroxidation, however, it was able to induce effects on the antioxidant defenses processes. The LBI therapy appeared to show photomodulatory promoting effects reduction of the MDA levels, increasing GSH levels and with intense immunostaining for SOD and GPx, demonstrating that laser therapy induced antioxidant effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided