32 resultados para Pavimentos : Deformação : Ensaios
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
NASCIMENTO, H. G. ; FERNANDES, L. C. ; SOUSA, M. B. C. . Avaliação da fidedignidade dos ensaios de esteróides fecais realizados no Laboratório de Medidas Hormonais do Departamento de Fisiologia da UFRN. Publica , v. 2, p. 39-48, 2006.
Resumo:
In this paper we developed a prototype for dynamic and quantitative analysis of the hardness of metal surfaces by penetration tests. It consists of a micro-indenter which is driven by a gear system driven by three-rectified. The sample to be tested is placed on a table that contains a load cell that measures the deformation in the sample during the penetration of micro-indenter. With this prototype it is possible to measure the elastic deformation of the material obtained by calculating the depth of penetration in the sample from the difference of turns between the start of load application to the application of the load test and return the indenter until the complete termination of load application. To determine the hardness was used to measure the depth of plastic deformation. We used 7 types of steel trade to test the apparatus. There was a dispersion of less than 10% for five measurements made on each sample and a good agreement with the values of firmness provided by the manufacturers.
Resumo:
Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure
Resumo:
The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive
Resumo:
The new oil reservoirs discoveries in onshore and ultra deep water offshore fields and complex trajectories require the optimization of procedures to reduce the stops operation during the well drilling, especially because the platforms and equipment high cost, and risks which are inherent to the operation. Among the most important aspects stands out the drilling fluids project and their behavior against different situations that may occur during the process. By means of sedimentation experiments, a correlation has been validated to determe the sedimentation particles velocity in variable viscosity fluids over time, applying the correction due to effective viscosity that is a shear rate and time function. The viscosity evolution over time was obtained by carrying out rheologic tests using a fixed shear rate, small enough to not interfere in the fluid gelling process. With the sedimentation particles velocity and the fluid viscosity over time equations an iterative procedure was proposed to determine the particles displacement over time. These equations were implemented in a case study to simulate the cuttings sedimentation generated in the oil well drilling during stops operation, especially in the connections and tripping, allowing the drilling fluid project in order to maintain the cuttings in suspension, avoiding risks, such as stuck pipe and in more drastic conditions, the loss of the well
Resumo:
The main objective of this thesis was the study of bracing panels of structural masonry, by applying the Finite Element Method and Strut and Tie Method. It was analyzed the following aspects: the effect of orthotropy on the behavior of the panels; distribution of horizontal forces between panels for buildings; comparison between Equivalent Frame and Finite Elements models; panels design with the Strut and Tie Method. The results showed that one should not disregard the orthotropy, otherwise this can lead to models stiffer than the real. Regarding the distribution of horizontal forces, showed that the disregard of lintels and shear deformation leads to significant differences in the simplified model. The results showed also that the models in Finite Element and Equivalent Frame exhibit similar behavior in respect to stiffness of panels and stress distribution over the sessions requested. It was discussing criteria for designing Strut and Tie Method models in one floor panels. Then, the theoretical strength these panels was compared with the rupture strength of panels tested in the literature. The theoretical maximum strength were always less than the rupture strength of the panels obtained in tests, due to the fact that the proposed model cannot represent the behavior of the masonry after the start of the panel cracking due to plasticization of the reinforcement
Resumo:
Soil improved with the addition of cement have been utilized as an alternative to the construction of various types of geotechnical works, almost always present economic and environmental advantages. This paper presents a study on the usage of cement in the improvement of mechanical properties of sandy soils, characteristic of the region of Natal, collected from its dunes. This research was made in order to analyze the influence of cement content, voids, and also including water immersion and confining pressure. Samples molded from cement-soil mixtures were tested for unconfined compression tests and triaxial tests. The samples had the percentage of cement mixed in 2.5%, 5% and 10% by weight. The cement agent used was the Portland Cement of High Early strength(CPV-ARI), which promoted agility to the experimental procedure for presenting a rapid gain in strenght. The void ratio used ranged from 0.7 (more compact), 0,9 and 1,1(softer). The soil under study can be considered as pure sand. In general, it can be stated that the larger the amount of cement added to the sand studied is, the greater ultimate strength will be. Likewise, as more compact the soil is, the less void ratio and more resistant it will be present. The confining pressure tends to increase the resistance of the specimens. The cementing adopted grades showed that the use of different criteria for failure did not significantly alter the stress-strain parameters for the sand studied. The angle of friction values were found within the typical range of medium and compact sands. Cementing acted in the sand providing an intercepted cohesion which increased enhancing the potential cementation. In triaxial compression tests, the sand with void ratio is equal to 0.7 and showed the expected behavior for a compact sand while the stress-strain behavior of the same sand with the void ratio of 0.9 tended to be expected for the soft sand as well
Resumo:
The hardness test is thoroughly used in research and evaluation of materials for quality control. However, this test results are subject to uncertainties caused by the process operator in the moment of the mensuration impression diagonals make by the indenter in the sample. With this mind, an automated equipment of hardness mensuration was developed. The hardness value was obtained starting from the mensuration of plastic deformation suffered by the material to a well-known load. The material deformation was calculated through the mensuration of the difference between the progress and retreat of a diamond indenter on the used sample. It was not necessary, therefore, the manual mensuration of the diagonals, decreasing the mistake source caused by the operator. Tension graphs of versus deformation could be analyzed from data obtained by the accomplished analysis, as well as you became possible a complete observation of the whole process. Following, the hardness results calculated by the experimental apparatus were compared with the results calculated by a commercial microhardness machine with the intention of testing its efficiency. All things considered, it became possible the materials hardness mensuration through an automated method, which minimized the mistakes caused by the operator and increased the analysis reliability
Resumo:
The present work consists in the analysis of tribologycal properties of basic and multifunctional knitted fabrics. This knowledge has fundamental importance for the textile industry since it can quantify, in an objective way, the tactil. The fabrics used were characterized by friction and mechanical tests for determining the viscoelastic region, wear resistance and friction coefficient of the fabrics used. The stress-strain curve was obtained by the method Kawabata, KES-FB1. Wear tests performed with the aid of equipment Martindale. The measurement of friction coefficient, two methods were used and analyzed comparatively. The first was a method already established worldwide known as KES-FB4 and the second was an innovative method called FRICTORQ, developed by the University of Minho. These two methods were compared taking into account the relative motion between the tribologycal pairs are different from each method. While the first motion is translational, the second is rotational. It was formal that the knitted had a multifunctional fabrics tribologycal performance which was better than the basic knitted fabrics, as the viscoelastic region, was laager highlighting a multifunctional structure, with greater wear resistance mainly on the back side of the knitted fabrics and lower friction coefficient. Performing a comparative analysis between two methods used to measure the friction coefficient, it was formal that both methods were consistent in terms of results. In operational terms, the FRICTORQ showed ease of operation and increased reproducibility of results
Resumo:
Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength
Resumo:
This research work is based, in search of reinforcement s vegetable alternative to polymer composites. The idealization of making a hybrid composite reinforced with vegetable fibers licuri with synthetic fibers is a pioneer in this area. Thus was conceived a hybrid composite laminate consisting of 05 (five) layers being 03 (three) webs of synthetic fibers of glass and E-02 (two) unidirectional fabrics of vegetable fibers licuri. In the configuration of the laminate layers have alternating distribution. The composite laminate was manufactured in Tecniplas Commerce & Industry LTD, in the form of a card through the manufacturing process of hand lay up. Licuri fibers used in making the foil were the City of Mare Island in the state of Bahia. After cooking and the idealization of the hybrid composite laminate, the objective of this research work has focused on evaluating the performance of the mechanical properties (ultimate strength, stiffness and elongation at break) through uniaxial tensile tests and three point bending. Comparative studies of the mechanical properties and as well as among other types of laminated hybrid composites studied previously, were performed. Promising results were found with respect to the mechanical properties of strength and stiffness to the hybridization process idealized here. To complement the entire study were analyzed in terms of macroscopic and microscopic characteristics of the fracture for all tests.
Resumo:
Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.
Resumo:
With the current growth in consumption of industrialized products and the resulting increase in garbage production, their adequate disposal has become one of the greatest challenges of modern society. The use of industrial solid residues as fillers in composite materials is an idea that emerges aiming at investigating alternatives for reusing these residues, and, at the same time, developing materials with superior properties. In this work, the influence of the addition of sand, diatomite, and industrial residues of polyester and EVA (ethylene vinyl acetate), on the mechanical properties of polymer matrix composites, was studied. The main objective was to evaluate the mechanical properties of the materials with the addition of recycled residue fillers, and compare to those of the pure polyester resin. Composite specimens were fabricated and tested for the evaluation of the flexural properties and Charpy impact resistance. After the mechanical tests, the fracture surface of the specimens was analyzed by scanning electron microscopy (SEM). The results indicate that some of the composites with fillers presented greater Young s modulus than the pure resin; in particular composites made with sand and diatomite, where the increase in modulus was about 168 %. The composites with polyester and EVA presented Young s modulus lower than the resin. Both strength and maximum strain were reduced when fillers were added. The impact resistance was reduced in all composites with fillers when compared to the pure resin, with the exception of the composites with EVA, where an increase of about 6 % was observed. Based on the mechanical tests, microscopy analyses and the compatibility of fillers with the polyester resin, the use of industrial solid residues in composites may be viable, considering that for each type of filler there will be a specific application
Resumo:
The increasing demand for asphalt leads to the development of techniques that can improve the quality of products and increase the useful working life of pavements. Consequently, there is a growing application of asphalt emulsions, which are produced from a mixture of petroleum asphalt cement (CAP) with an aqueous phase. The main advantage of asphalt emulsions is its cold application, reducing energy costs. Conventional emulsions are obtained using asphalt, water, solvent, and additives. The modified asphalt emulsion is developed by adding a modifying agent to conventional emulsions. These modifiers can be natural fibers, waste polymers, nanomaterials. In this work modified asphalt emulsion were obtained using organoclays. First, it was prepared a conventional asphalt emulsion with the following mass proportion: 50% of 50/70 penetration grade CAP, 0.6% of additives and 3% of emulsifier, 20% of solvent and 26.4% of water. It was used bentonite and vermiculite (1% and 4%) to obtain the modified asphalt emulsion. Bentonite and vermiculite were added in its raw state and as an organoclay form and as an organoclay-acid form, resulting in 26 experimental runs. The methodology described by Qian et al. (2011), with modifications, was used to obtain the organoclay and the organoclay-acid form. infrared spectroscopy (IR)) were used to characterize the clays and nanoclays. The emulsions were prepared in a colloidal mill, using 30 minutes and 1 hour as mixing time. After, the emulsions were characterized. The following tests were performed, in accordance with the Brazilian specifications (DNER- 369/97): sieve analysis, Saybolt Furol viscosity, pH determination, density, settlement and storage stability, residue by evaporation, and penetration of residue. Finally, it can be concluded that the use of nanoclays as asphalt modifiers represent a viable alternative to the road paving industry