2 resultados para Pareto-optimal solutions
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.