1 resultado para Parallel machines
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (18)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Applied Math and Science Education Repository - Washington - USA (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (28)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (66)
- Boston College Law School, Boston College (BC), United States (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cámara de Comercio de Bogotá, Colombia (1)
- CentAUR: Central Archive University of Reading - UK (111)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (18)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (13)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (2)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (61)
- DRUM (Digital Repository at the University of Maryland) (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (75)
- Greenwich Academic Literature Archive - UK (1)
- Instituto Politécnico do Porto, Portugal (31)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (17)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (8)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (65)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (16)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (10)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (84)
- Universidade do Minho (4)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (56)
- Université de Montréal, Canada (10)
- University of Michigan (3)
- University of Queensland eSpace - Australia (18)
- University of Southampton, United Kingdom (4)
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.