8 resultados para Painéis de madeira

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work regards to the structural conception as a formal element of design in wood architecture. On this approach, the group of projects studied is formed by some realized works of two important Brazilian architects: Severiano Porto and Marcos Acayaba. The time interval comprises the period from 1971 to 1997, which correspond respectively to the years of the creation of first and the last of the analyzed constructions. The research perspective concerns to the relationship between the parts, the whole and the building techniques adopted in each project. Moreover, the analysis focuses on the structure as the link among the different projectual ideas. Thus, the research method firstly includes a survey of specific bibliographies and documents which refer to the structural conception in wood architecture. Secondly,the buildings are analyzed according to the methods of architectural composition discussed through this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is about the use of the coconut´s endocarp (nucifera linn) and the waste of derivatives of wood and furniture as raw material to technological use. In that sense, the lignocellulosic waste is used for manufacture of homogeneous wood sheet agglomerate (LHWS) and lignocellulosic load which take part of a polymeric composite with fiber glass E (GFRP-WC). In the manufacturing of the homogeneous wood sheet agglomerate (LHWS), it was used mamona´s resin as waste s agglutinating element. The plates were taken up in a hydraulic press engine, heated, with temperature control, where they were manufactured for different percentage of waste wood and coconuts nucífera linn. Physical tests were conducted to determine the absorption of water, density, damp grade (in two hours and twenty-four hours), swelling thickness (in two hours and twenty-four hours), and mechanical tests to evaluate the parallel tensile strength (internal stick) and bending and the static (steady) flexural. The physical test´s results indicate that the LHWS can be classified as bonded wood plate of high-density and with highly water resistant. In the mechanical tests it was possible to establish that LHWS presents different characteristics when submitted to uniaxial tensile and to the static (steady) flexural, since brittle and elasticity module had a variation according to the amount of dry endocarp used to manufacture each trace of LHWS. The GFRP-WC was industrially manufactured by a hand-lay-up process where the fiber glass E was used as reinforcement the lignocellulósic´s waste as load. The matrix was made with ortofitalic unsaturated polyester resin. Physical and mechanical tests were performed in presence of saturated humidity and dry. The results indicated good performance of the GFRP-WC, as traction as in flexion in three points. The presence of water influenced the modules obtained in the flexural and tensile but there were no significant alteration in the properties analyzed. As for the fracture, the analysis showed that the effects are more harmful in the presence of damp, under the action of loading tested, but despite this, the fracture was well defined starting in the external parts and spreading to the internal regions when one when it reaches the hybrid load

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this thesis was the study of bracing panels of structural masonry, by applying the Finite Element Method and Strut and Tie Method. It was analyzed the following aspects: the effect of orthotropy on the behavior of the panels; distribution of horizontal forces between panels for buildings; comparison between Equivalent Frame and Finite Elements models; panels design with the Strut and Tie Method. The results showed that one should not disregard the orthotropy, otherwise this can lead to models stiffer than the real. Regarding the distribution of horizontal forces, showed that the disregard of lintels and shear deformation leads to significant differences in the simplified model. The results showed also that the models in Finite Element and Equivalent Frame exhibit similar behavior in respect to stiffness of panels and stress distribution over the sessions requested. It was discussing criteria for designing Strut and Tie Method models in one floor panels. Then, the theoretical strength these panels was compared with the rupture strength of panels tested in the literature. The theoretical maximum strength were always less than the rupture strength of the panels obtained in tests, due to the fact that the proposed model cannot represent the behavior of the masonry after the start of the panel cracking due to plasticization of the reinforcement

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New materials made from industrial wastes have been studied as an alternative to traditional fabrication processes in building and civil engineering. These materials are produced considering some issues like: cost, efficiency and reduction of nvironmental damage. Specifically in cases of materials destined to dwellings in low latitude regions, like Brazilian Northeast, efficiency is related to mechanical and thermal resistance. Thus, when thermal insulation and energetic efficiency are aimed, it s important to increase thermal resistance without depletion of mechanical properties. This research was conducted on a construction element made of two plates of cement mortar, interspersed with a plate of recycled expanded polystyrene (EPS). This component, widely known as sandwich-panel, is commonly manufactured with commercial EPS whose substitution was proposed in this study. For this purpose it was applied a detailed methodology that defines parameters to a rational batching of the elements that constitute the nucleus. Samples of recycled EPS were made in two different values of apparent specific mass (ρ = 65 kg/m³; ρ = 130 kg/m³) and submitted to the Quick-Line 30TM that is a thermophysical properties analyzer. Based on the results of thermal conductivity, thermal capacity and thermal diffusivity obtained, it was possible to assure that recycled EPS has thermal insulation characteristics that qualify it to replace commercial EPS in building and civil engineering industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The developed study proposes a new computer modeling efficient and easy to apply in usual project situations to evaluate the interaction between masonry panels and support structure. The proposed model simulates the behavior of the wall exclusively using frame finite elements, thus compounding an equivalent frame. The validation was performed in two ways: firstly, through the analysis of various panels of generic plans, comparing the results obtained from equivalent frame model with the ones from a reference model, which uses shell finite elements in discretization of the walls; and in a second step, comparing with the results of the experimental model of Rosenhaupt. The analyzes considered the linear elastic behavior for materials and consisted basically in the evaluation of vertical displacements and efforts in support beams, and tensions at the base of walls. Was also evaluated, from flat and threedimensional modeling of some walls from a real project, important aspects of the wall-beam interaction, e.g.: the presence of openings of doors and windows, arranged in any position; conditions of support and linking of beams; interference of moorings between walls; and consideration of wind action. The analysis of the achieved results demonstrated the efficiency of the proposed modeling, since they have very similar aspects in the distribution of stresses and efforts, always with intensities slightly larger than those of the reference and experimental models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work regards to the structural conception as a formal element of design in wood architecture. On this approach, the group of projects studied is formed by some realized works of two important Brazilian architects: Severiano Porto and Marcos Acayaba. The time interval comprises the period from 1971 to 1997, which correspond respectively to the years of the creation of first and the last of the analyzed constructions. The research perspective concerns to the relationship between the parts, the whole and the building techniques adopted in each project. Moreover, the analysis focuses on the structure as the link among the different projectual ideas. Thus, the research method firstly includes a survey of specific bibliographies and documents which refer to the structural conception in wood architecture. Secondly,the buildings are analyzed according to the methods of architectural composition discussed through this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is about the use of the coconut´s endocarp (nucifera linn) and the waste of derivatives of wood and furniture as raw material to technological use. In that sense, the lignocellulosic waste is used for manufacture of homogeneous wood sheet agglomerate (LHWS) and lignocellulosic load which take part of a polymeric composite with fiber glass E (GFRP-WC). In the manufacturing of the homogeneous wood sheet agglomerate (LHWS), it was used mamona´s resin as waste s agglutinating element. The plates were taken up in a hydraulic press engine, heated, with temperature control, where they were manufactured for different percentage of waste wood and coconuts nucífera linn. Physical tests were conducted to determine the absorption of water, density, damp grade (in two hours and twenty-four hours), swelling thickness (in two hours and twenty-four hours), and mechanical tests to evaluate the parallel tensile strength (internal stick) and bending and the static (steady) flexural. The physical test´s results indicate that the LHWS can be classified as bonded wood plate of high-density and with highly water resistant. In the mechanical tests it was possible to establish that LHWS presents different characteristics when submitted to uniaxial tensile and to the static (steady) flexural, since brittle and elasticity module had a variation according to the amount of dry endocarp used to manufacture each trace of LHWS. The GFRP-WC was industrially manufactured by a hand-lay-up process where the fiber glass E was used as reinforcement the lignocellulósic´s waste as load. The matrix was made with ortofitalic unsaturated polyester resin. Physical and mechanical tests were performed in presence of saturated humidity and dry. The results indicated good performance of the GFRP-WC, as traction as in flexion in three points. The presence of water influenced the modules obtained in the flexural and tensile but there were no significant alteration in the properties analyzed. As for the fracture, the analysis showed that the effects are more harmful in the presence of damp, under the action of loading tested, but despite this, the fracture was well defined starting in the external parts and spreading to the internal regions when one when it reaches the hybrid load