7 resultados para POLYMER INTERACTION PARAMETERS
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Colon-specific drug delivery systems have attracted increasing attention from the pharmaceutical industry due to their ability of treating intestinal bowel diseases (IBD), which represent a public health problem in several countries. In spite of being considered a quite effective molecule for the treatment of IBD, mesalazine (5-ASA) is rapidly absorbed in the upper gastrointestinal tract and its systemic absorption leads to risks of adverse effects. The aim of this work was to develop a microparticulate system based on xylan and Eudragit® S- 100 (ES100) for colon-specific delivery of 5-ASA and evaluate the interaction between the polymers present in the systems. Additionaly, the physicochemical and rheological properties of xylan were also evaluated. Initially, xylan was extracted from corn cobs and characterized regarding the yield and rheological properties. Afterwards, 10 formulations were prepared in different xylan and ES100 weight ratios by spray-drying the polymer solutions in 0.6N NaOH and phosphate buffer pH 7.4. In addition, 3 formulations consisting of xylan microcapsules were produced by interfacial cross-linking polymerization and coated by ES100 by means of spray-drying in different polymer weight ratios of xylan and ES100. The microparticles were characterized regarding yield, morphology, homogeneity, visual aspect, crystallinity and thermal behavior. The polymer interaction was investigated by infrared spectroscopy. The extracted xylan was presented as a very fine and yellowish powder, with mean particle size smaller than 40μm. Regarding the rheological properties of xylan, they demonstrated that this polymer has a poor flow, low density and high cohesiveness. The microparticles obtained were shown to be spherical and aggregates could not be observed. They were found to present amorphous structure and have a very high thermal stability. The yield varied according to the polymer ratios. Moreover, it was confirmed that the interaction between xylan and ES100 occurs only by means of physical aggregation
Resumo:
Crude oil is a complex liquid mixture of organic and inorganic compounds that are dominated by hydrocarbons. It is a mixture of alkanes from the simplest to more complex aromatic compounds that are present derivatives such as gasoline, diesel, alcohol, kerosene, naphtha, etc.. These derivatives are extracted from any oil, however, only with a very high quality, in other words, when the content of hydrocarbons of low molecular weight is high means that production of these compounds is feasible. The American Petroleum Institute (API) developed a classification system for the various types of oil. In Brazil, the quality of most of the oil taken from wells is very low, so it is necessary to generate new technology to develop best practices for refining in order to produce petroleum products of higher commercial value. Therefore, it is necessary to study the thermodynamic equilibrium properties of its derivative compounds of interest. This dissertation aims to determine vapor-liquid equilibrium (VLE) data for the systems Phenilcyclohexane - CO2, and Cyclohexane - Phenilcyclohexane - CO2 at high pressure and temperatures between 30 to 70oC. Furthermore, comparisons between measured VLE experimental data from this work and from the literature in relation to the Peng- Robinson molecular thermodynamic model, using a simulation program SPECS IVCSEP v5.60 and two adjustable interaction parameters, have been performed for modeling and simulation purposes. Finally, the developed apparatus for determination of phase equilibrium data at high pressures is presented
Resumo:
This dissertation aims to assess the representativeness of the manual chilled mirror analyzer (model II Chanscope 13-1200-CN-2) used for the determination of condensed hydrocarbons of natural gas compared to the indirect methods, based on thermodynamic models equation of state. Additionally, it has been implemented in this study a model for calculating the dew point of natural gas. The proposed model is a modification of the equation of state of Peng-Robinson admits that the groups contribution as a strategy to calculate the binary interaction parameters kij (T) temperature dependence. Experimental data of the work of Brown et al. (2007) were used to compare the responses of the dew point of natural gas with thermodynamic models contained in the UniSim process simulator and the methodology implemented in this study. Then two natural gas compositions were studied, the first being a standard gas mixture gravimetrically synthesized and, second, a mixture of processed natural gas. These experimental data were also compared with the results presented by UniSim process simulator and the thermodynamic model implemented. However, data from the manual analysis results indicated significant differences in temperature, these differences were attributed to the formation of dew point of water, as we observed the appearance of moisture on the mirror surface cooling equipment
Resumo:
The nonionic surfactants when in aqueous solution, have the property of separating into two phases, one called diluted phase, with low concentration of surfactant, and the other one rich in surfactants called coacervate. The application of this kind of surfactant in extraction processes from aqueous solutions has been increasing over time, which implies the need for knowledge of the thermodynamic properties of these surfactants. In this study were determined the cloud point of polyethoxylated surfactants from nonilphenolpolietoxylated family (9,5 , 10 , 11, 12 and 13), the family from octilphenolpolietoxylated (10 e 11) and polyethoxylated lauryl alcohol (6 , 7, 8 and 9) varying the degree of ethoxylation. The method used to determine the cloud point was the observation of the turbidity of the solution heating to a ramp of 0.1 ° C / minute and for the pressure studies was used a cell high-pressure maximum ( 300 bar). Through the experimental data of the studied surfactants were used to the Flory - Huggins models, UNIQUAC and NRTL to describe the curves of cloud point, and it was studied the influence of NaCl concentration and pressure of the systems in the cloud point. This last parameter is important for the processes of oil recovery in which surfactant in solution are used in high pressures. While the effect of NaCl allows obtaining cloud points for temperatures closer to the room temperature, it is possible to use in processes without temperature control. The numerical method used to adjust the parameters was the Levenberg - Marquardt. For the model Flory- Huggins parameter settings were determined as enthalpy of the mixing, mixing entropy and the number of aggregations. For the UNIQUAC and NRTL models were adjusted interaction parameters aij using a quadratic dependence with temperature. The parameters obtained had good adjust to the experimental data RSMD < 0.3 %. The results showed that both, ethoxylation degree and pressure increase the cloudy points, whereas the NaCl decrease
Resumo:
A real space renormalization group method is used to investigate the criticality (phase diagrams, critical expoentes and universality classes) of Z(4) model in two and three dimensions. The values of the interaction parameters are chosen in such a way as to cover the complete phase diagrams of the model, which presents the following phases: (i) Paramagnetic (P); (ii) Ferromagnetic (F); (iii) Antiferromagnetic (AF); (iv) Intermediate Ferromagnetic (IF) and Intermediate Antiferromagnetic (IAF). In the hierarquical lattices, generated by renormalization the phase diagrams are exact. It is also possible to obtain approximated results for square and simple cubic lattices. In the bidimensional case a self-dual lattice is used and the resulting phase diagram reproduces all the exact results known for the square lattice. The Migdal-Kadanoff transformation is applied to the three dimensional case and the additional phases previously suggested by Ditzian et al, are not found
Resumo:
Copper is one of the most used metals in platingprocesses of galvanic industries. The presence of copper, a heavy metal, in galvanic effluents is harmful to the environment.The main objective of this researchwas the removal ofcopperfromgalvanic effluents, using for this purpose anionic surfactants. The removal process is based on the interaction between the polar head group of the anionic surfactant and the divalent copper in solution. The surfactants used in this study were derived from soybean oil (OSS), coconut oil (OCS), and sunflower oil (OGS). It was used a copper synthetic solution (280 ppm Cu+2) simulating the rinse water from a copper acid bath of a galvanic industry. It were developed 23and 32 factorial designs to evaluate the parameters that have influence in theremoval process. For each surfactant (OSS, OCS, and OGS), the independent variables evaluated were: surfactant concentration (1.25 to 3.75 g/L), pH (5 to 9) and the presence of an anionic polymer (0 to 0.0125 g/L).From the results obtained in the 23 factorial design and in the calculus for estimatingthe stoichiometric relationship between surfactants and copper in solution, it were developed new experimental tests, varying surfactant concentration in the range of 1.25 to 6.8 g/L (32 factorial design).The results obtained in the experimental designs were subjected to statistical evaluations to obtain Pareto charts and mathematical modelsfor Copper removal efficiency (%). The statistical evaluation of the 23 and 32factorial designs, using saponifiedcoconut oil (OCS), presented the mathematical model that best described the copper removal process.It can be concluded that OCS was the most efficient anionic surfactant, removing 100% of the copper present in the synthetic galvanic solution
Resumo:
Surfactant-polymer interactions are widely used when required rheological properties for specific applications, such as the production of fluids for oil exploration. Studies of the interactions of chitosan with cationic surfactants has attracted attention by being able to cause changes in rheological parameters of the systems making room for new applications. The commercial chitosan represents an interesting alternative to these systems, since it is obtained from partial deacetylation of chitin: the residues sites acetylated can then be used for the polymer-surfactant interactions. Alkyl ethoxylated surfactants can be used in this system, since these non-ionic surfactants can interact with hydrophobic sites of chitosan, modifying the rheology of solutions or emulsions resultants, which depends on the relaxation phenomenon occurring in these systems. In this work, first, inverse emulsions were prepared from chitosan solution as the dispersed phase and cyclohexane as the continuous phase were, using CTAB as a surfactant. The rheological analysis of these emulsions showed pronounced pseudoplastic behavior. This behavior was attributed to interaction of "loops" of chitosan chains. Creep tests were also performed and gave further support to these discussions. Subsequently, in order to obtain more information about the interaction of chitosan with non-ionic surfactants, solutions of chitosan were mixed with C12E8 and and carried out rheological analysis and dynamic light scattering. The systems showed marked pseudoplastic behavior, which became less evident when the concentration of surfactant was increased. Arrhenius and KWW equations were used to obtain parameters of the apparent activation energy and relaxation rate distribution, respectively, to which were connected to the content of surfactant and temperature used in this work