11 resultados para PLATINUM-MONOLAYER ELECTROCATALYSTS
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work, chitosan was used as a coating of pure perlite in order to increase the accessibility of the groups OH- e NH2+the adsorptionof ions Mn2+ e Zn2+.The characterization results of the expanded perlite classified as microporous and whose surface area 3,176 m2 g-1after the change resulted in 4,664 m2g-1.From the thermogravimetry(TG) it was found that the percentage of coating was34,3%.The infrared analysis can prove the presence of groups Si-OH, Si-O e Al-O-Siresulting from the perlite and C=O, NH2and OH characterization of chitosan. The experiments on experiments on the adsorption of Mn and Zn were performed in the concentration range of10 a 50 mgL-1and the adsorption capacity inpH 5,8 e 5,2 was 19,49 and 23,09 mgg-1to 25 oC,respectively.The adsorption data were best fitted to Langmuir adsorption model to Langmuir adsorption model for both metalionsisindicative of monolayer adsorption. The kinetics of adsorption were calculated from the equation of Lagergren fitting the model pseudo-second-order for all initial concentrations, suggesting that adsorption of ions Mn2+ and Zn2+ follows the kinetics of pseudo-second-order and whose constant Speedk2(g/mg.min) are 0,105 e 3,98 and capacity and maximum removal qe 4,326 e 3,348,respectively.In this study we used a square wave voltammetry cathodic stripping voltammetry to quantify the adsorbed ions, and the working electrode glassy carbon, reference electrode silver / silver chloride and a platinum auxiliary electrode. The attainment of the peaks corresponding to ions Mn2+ and Zn2+ was evaluated in and electrochemical cell with a capacity of 30 mL using a buffer system (Na2HPO4/NaH2PO4)at pH 4 and was adjusted with solutionsH3PO4 0,1molL-1and NaOH 0,1 molL-1and addition of the analyte has been a cathodic peak in- 0,873 Vand detection limit of2,55x10-6molL-1para Zn.The dough used for obtaining the adsorption isotherm was 150 mg and reached in 120 min time of equilibrium for both metal ions.The maximum adsorption for 120 min with Mn concentration 20 mgL-1 and Zn 10 mgL-1,was91, 09 e 94, 34%, respectively
Resumo:
The magnetic order of bylayers composed by a ferromagnetic film (F) coupled with an antiferromagnetic film (AF) is studied. Piles of coupled monolayers describe the films and the interfilm coupling is described by an exchange interaction between the magnetic moments at the interface. The F has a cubic anisotropy while the AF has a uniaxial anisotropy. We analyze the effects of an external do magnetic field applied parallel to the interface. We consider the intralayer coupling is strong enough to keep parallel all moments of the monolayer an then they are described by one vector proportional to the magnetization of the layer. The interlayer coupling is represented by an exchange interaction between these vectors. The magnetic energy of the system is the sum of the exchange. Anisotropy and Zeeman energies and the equilibrium configuration is one that gives the absolute minimum of the total energy. The magnetization of the system is calculated and the influence of the external do field combined with the interfilm coupling and the unidirectional anisotropy is studied. Special attention is given to the region near of the transition fields. The torque equation is used to study dynamical behavior of these systems. We consider small oscillations around the equilibrium position and we negleet nonlinear terms to obtain the natural frequencies of the system. The dependence of the frequencies with the external do field and their behavior in the phase transition region is analized
Resumo:
T. gondii is an obligate intracellular protozoan and the main cause of retinochoroiditis in humans. The aim of this study was to evaluate the effect of the antipsychotic drugs haloperidol and clozapine on the course of infection by T. gondii of cultured embryonic retinal cells. Embryo retinas of Gallus gallus domesticus (E12) were used for the preparation of mixed monolayer cultures of retinal cells. Cultures were maintained on plates of 96 and 24 wells by 37°C in DMEM medium supplemented with 5% fetal bovine serum for 2 days. After this period, cultures were simultaneously infected with tachyzoites of T. gondii and treated with the antipsychotics haloperidol and clozapine for 48 hours. Treatment effects were determined by both assessing cell viability with the MTT method and evaluating infection outcomes in slides stained with Giemsa. The treatment with haloperidol and clozapine cells infected with T. gondii resulted in higher viability of these cells, suggesting a possible prevention of neuronal degeneration induced by T. gondii. Additionally, intracellular replication of this protozoan in cells treated with haloperidol and clozapine were significantly reduced, possibly by modulation of the parasite s intracellular calcium concentration
Resumo:
In this work, the objective in study was the development of a biossensor potencyometric for urea detection, starting from the extracted urease of soy grains. Initially, was made a chemometrics study, through a planning factorial 24, objectified to find great conditions for the extraction of the urease without its properties were affected. Starting from this study, the best conditions were determined for the obtaining of rich extracts in urease, allowing the biossensors making with good characteristics. These were made using a platinum electrode as transducer with the dispersed urease in chitosan head office and reticulated in glutaraldehyde vapor. The biossensors obtained presented a limit of urea detection the same to 0,33 mM and lineal strip between 0,33 and 3 mM of the substratum. The time of answer was considered loud, mainly, in low concentrations of the substratum, where it was taken about 5 minutes by analysis. For high concentrations that time was reduced for not more than one minute. The time of life was limited by the adherence of the enzymatic membrane to the transducer, but it was possible to maintain the biossensor with operation for one month with about 50 accomplished measures. Application of the biossensor for analyses of fertilizers to the urea base presented excellent result for a sample with few interfering, but it was different when the used fertilizer was originating from of a complex sample. Even so the label was not expressed the text of nitrogen it was totally coming of the urea. An evaluation of the kinetic parameters of the catalytic reaction of the biossensor showed coherence with the results exposed in the literature
Resumo:
In this work, the treatment of synthetic wastewaters containing Remazol Red BR (RRB) and Novacron Blue C-D (NB) by anodic oxidation using boron doped diamond anodes (BDD) and Novacron Yellow (YN) using BDD and Platinum (Pt) anodes was investigated. Galvanostatic electrolyses of RRB and NB synthetic wastewaters have led to the complete decolorization removal at different operating conditions (current density, pH and temperature). The influence of these parameters was investigated in order to find the best conditions for dyestuff colour removal. According to the experimental results obtained, the electrochemical oxidation process is suitable for decolorizing wastewaters containing these textile dyes, due to the electrocatalytic properties of BDD and Pt anode. Energy requirements for removing colour during galvanostatic electrolyses of RRB, NB and YN synthetic solutions depends mainly on the operating conditions; for example for RRB, it passes from 3.30 kWh m-3 at 20 mA cm-2 to 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH = 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (data estimated per volume of treated effluent). In order to verify the Brazilian law regulations of NB and RRB synthetic solutions after electrochemical decolourisation treatment, Hazen Units values were determined and the total colour removal was achieved; remaining into the regulations. Finally, electrical energy cost for removing colour was estimated
Resumo:
In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents
Resumo:
In this paper, the technique of differential pulse voltammetry (DPV) has been studied for monitoring the concentration of oxalic acid (OA) during their electrochemical oxidation (EO) in acidic medium using platinum anode supported on titanium (Ti / Pt). The DPV was standardized and optimized using a glassy carbon electrode modified with cysteine. The modification with cysteine was developed electrochemically, forming a polymeric film on the surface of the glassy carbon electrode. The formation of the polymer film was confirmed by analysis of scanning electron microscope and atomic force microscope, confirming the modification of the electrode. The electrochemical degradation was developed using different current densities 10, 20 30 and 40 mA cm -2 electrode with Ti / Pt observing the degradation of oxalic acid, and monitored using the method of KMnO4 titration. However, the analyzes with DPV showed the same behavior elimination of oxalic acid titration. Compared with the titration method classical observed and DPV could be a good fit, confidence limits of detection and confirming the applicability of the technique electroanalytical for monitoring the degradation of oxalic acid
Resumo:
Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type
Resumo:
The contamination by metal ions has been occurring for decades through the introduction of liquid effluent not treated, mainly from industrial activities, rivers and lakes, affecting water quality. For that the effluent can be disposed in water bodies, environmental standards require that they be adequately addressed, so that the concentration of metals does not exceed the limits of standard conditions of release in the receptor. Several methods for wastewater treatment have been reported in the literature, but many of them are high cost and low efficiency. The adsorption process has been used as effective for removal of metal ions. This paper presents studies to evaluate the potential of perlite as an adsorbent for removing metals in model solution. Perlite, in its natural form (NP) and expanded (EP), was characterized by X-ray fluorescence, X-ray diffraction, surface area analysis using nitrogen adsorption (BET method), scanning electron microscopy and Fourier transform infrared spectroscopy. The physical characteristic and chemical composition of the material presented were appropriate for the study of adsorption. Adsorption experiments by the method of finite bath for model solutions of metal ions Cr3+, Cu2+, Mn2+ and Ni2+ were carried out in order to study the effect of pH, mass of the adsorbent and the contact time on removal of ions in solution. The results showed that perlite has good adsorption capacity. The NP has higher adsorption capacity (mg g-1) than the EP. According to the values of the constant of Langmuir qm (mg g-1), the maximum capacity of the monolayer was obtained and in terms of proportion of mass, we found the following order experimental adsorption: Cr3+ (2.194 mg g- 1) > Ni2+ (0.585 mg g-1) > Mn2+ (0.515 mg g-1) > Cu2+ (0.513 mg g-1) and Cr3+ (1.934 mg g-1)> Ni2+ (0.514 mg g-1) > Cu2+ (0.421 mg g-1) > Mn2+ (0.364 mg g-1) on the NP and EP, respectively. The experimental data were best fitted the Langmuir model compared to Freundlich for Cu2+, Mn2+ and Ni2+. However, for the Cr3+, both models fit the experimental data
Resumo:
Bifunctional catalysts based on zircon oxide modified by tungsten (W = 10, 15 and 20 %) and by molybdenum oxide (Mo= 10, 15 e 20 %) containg platinum (Pt = 1%) were prepared by the polymeric precursor method. For comparison, catalysts the tungsten base was also prepared by the impregnation method. After calcinations at 600, 700 and 800 ºC, the catalysts were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, thermogravimetric and differential thermal analysis, nitrogen adsorption and scanning electron microscopy. The profile of metals reduction was determined by temperature programmed reduction. The synthesized catalysts were tested in n-heptane isomerization. X-ray diffractogram of the Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts revealed the presence of tetragonal ZrO2 and platinum metallic phases in all calcined samples. Diffraction peaks due WO3 and ZrO2 monoclinic also were observed in some samples of the Pt/WOx-ZrO2 catalysts. In the Pt/MoOx-ZrO2 catalysts also were observed diffraction peaks due ZrO2 monoclinic and Zr(MoO4)2 oxide. These phases contained on Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts varied in accordance with the W or Mo loading and in accordance with the calcination temperature. The infrared spectra showed absorption bands due O-W-O and W=O bonds in the Pt/WOx-ZrO2 catalysts and due O-Mo-O, Mo=O and Mo-O bonds in the Pt/MoOx-ZrO2 catalysts. Specific surface area for Pt/WOx-ZrO2 catalysts varied from 30-160 m2 g-1 and for the Pt/MoOx-ZrO2 catalysts varied from 10-120 m2 g-1. The metals loading (W or Mo) and the calcination temperature influence directly in the specific surface area of the samples. The reduction profile of Pt/WOx-ZrO2 catalysts showed two peaks at lower temperatures, which are attributed to platinum reduction. The reduction of WOx species was evidenced by two reduction peak at high temperatures. In the case of Pt/MoOx-ZrO2 catalysts, the reduction profile showed three reduction events, which are attributed to reduction of MoOx species deposited on the support and in some samples one of the peak is related to the reduction of Zr(MoO4)2 oxide. Pt/WOx-ZrO2 catalysts were active in the n-heptane isomerization with high selectivity to 3-methyl-hexane, 2,3- dimethyl-pentane, 2-methyl-hexane among other branched hydrocarbons. The Pt/MoOx-ZrO2 catalysts practically didn't present activity for the n-heptane isomerization, generating mainly products originating from the catalytic cracking
Resumo:
We report a theoretical investigation of the magnetic phases and hysteresis of exchange biased ferromagnetic (F) nanoelements for three di erent systems: exchange biased nanoparticles, exchange biased narrow ferromagnetic stripes and exchange biased thin ferromagnetic lms. In all cases the focus is on the new e ects produced by suitable patterns of the exchange energy coupling the ferromagnetic nanoelement with a large anisotropy antiferromagnetic (AF) substrate. We investigate the hysteresis of iron and permalloy nanoparticles with a square basis, with lateral dimensions between 45 nm and 120 nm and thickness between 12 nm and 21 nm. Interface bias is aimed at producing large domains in thin lms. Our results show that, contrary to intuition, the interface exchange coupling may generate vortex states along the hysteresis loop. Also, the threshold value of the interface eld strength for vortex nucleation is smaller for iron nanoelements. We investigate the nucleation and depinning of an array of domain walls pinned at interface defects of a vicinal stripe/AF bilayer. The interface exchange eld displays a periodic pattern corresponding to the topology of the AF vicinal substrate. The vicinal AF substrate consists of a sequence of terraces, each with spins from one AF subalattice, alternating one another. As a result the interface eld of neighboring terraces point in opposite direction, leading to the nucleation of a sequence of domain walls in the ferromagnetic stripe. We investigated iron an permalloy micrometric stripes, with width ranging from 100 nm and 300 nm and thickness of 5 nm. We focused in domain wall sequences with same chirality and alternate chirality. We have found that for 100nm terraces the same chiraility sequence is more stable, requiring a larger value of the external eld for depinning. The third system consists of an iron lm with a thickness of 5 nm, exchange coupled to an AF substrate with a periodic distribution of islands where the AF spins have the opposite direction of the spins in the background. This corresponds to a two-sublattice noncompensated AF plane (such as the surface of a (100) FeF2 lm), with monolayer-height islands containing spins of one sublattice on a surface containing spins of the opposite sublattice. The interface eld acting in the ferromagnetic spins over the islands points in the opposite direction of that in the spins over the background. This a model system for the investigation of interface roughness e ects. We have studied the coercicivity an exchange bias hysteresis shift as a function of the distance between the islands and the degree of interface roughness. We have found a relevant reduction of coercivity for nearly compensated interfaces. Also the e ective hysteresis shift is not proportional to the liquid moment of the AF plane. We also developed an analytical model which reproduces qualitatively the results of numerical simulations