4 resultados para PCI Geomatica
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.
Resumo:
The present work was carried through in the Grossos city - RN and had as main objectives the elaboration of an physicist-ambient, socioeconomic survey and execution a multisecular evaluation of 11 years, between 1986 and 1996, using remote sensing products, to evaluate the modifications of the land use, aiming at the generation of an information database to implementation a geographical information system (GIS) to management the this city. For they had been in such a way raised given referring the two Demographic Censuses carried through by the IBGE (1991 and 2000) and compared, of this form was possible to the accomplishment of an evaluation on the demographic aspects (degree of urbanization, etária structure, educational level) and economic (income, habitation, vulnerability, human development). For the ambient physical survey the maps of the natural resources had been confectioned (simplified geology, hydrography, geomorphologi, veget covering, ground association, use and occupation), based in comments of field and orbital products of remote sensoriamento (images Spot-HRVIR, Landsat 5-TM and IKONOS - II), using itself of techniques of digital picture processing. The survey of these data and important in the identification of the potentialities and fragilities of found ecosystems, therefore allows an adequate planning of the partner-economic development by means of an efficient management. The project was part of a partnership between the Grossos city hall the municipal City hall of Grossos - RN and the Geoscience post-graduate program of the UFRN, more specifically the Geomatica laboratory LAGEOMA
Resumo:
Objective to establish a methodology for the oil spill monitoring on the sea surface, located at the Submerged Exploration Area of the Polo Region of Guamaré, in the State of Rio Grande do Norte, using orbital images of Synthetic Aperture Radar (SAR integrated with meteoceanographycs products. This methodology was applied in the following stages: (1) the creation of a base map of the Exploration Area; (2) the processing of NOAA/AVHRR and ERS-2 images for generation of meteoceanographycs products; (3) the processing of RADARSAT-1 images for monitoring of oil spills; (4) the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products; and (5) the structuring of a data base. The Integration of RADARSAT-1 image of the Potiguar Basin of day 21.05.99 with the base map of the Exploration Area of the Polo Region of Guamaré for the identification of the probable sources of the oil spots, was used successfully in the detention of the probable spot of oil detected next to the exit to the submarine emissary in the Exploration Area of the Polo Region of Guamaré. To support the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products, a methodology was developed for the classification of oil spills identified by RADARSAT-1 images. For this, the following algorithms of classification not supervised were tested: K-means, Fuzzy k-means and Isodata. These algorithms are part of the PCI Geomatics software, which was used for the filtering of RADARSAT-1 images. For validation of the results, the oil spills submitted to the unsupervised classification were compared to the results of the Semivariogram Textural Classifier (STC). The mentioned classifier was developed especially for oil spill classification purposes and requires PCI software for the whole processing of RADARSAT-1 images. After all, the results of the classifications were analyzed through Visual Analysis; Calculation of Proportionality of Largeness and Analysis Statistics. Amongst the three algorithms of classifications tested, it was noted that there were no significant alterations in relation to the spills classified with the STC, in all of the analyses taken into consideration. Therefore, considering all the procedures, it has been shown that the described methodology can be successfully applied using the unsupervised classifiers tested, resulting in a decrease of time in the identification and classification processing of oil spills, if compared with the utilization of the STC classifier
Resumo:
The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.