6 resultados para PARTIAL-THICKNESS DEFECTS
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.
Resumo:
The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles
Resumo:
Today, one of the topics that attracts interest of the scientific community is the understanding of magnetic properties of magnetic systems with reduced dimensions, in particular, ferromagnetic thin films. In this case, the comprehension and control of these properties, as well as the development of routes to obtain them, are crucial issues in many aspects of current and future technologies for storage and transmission of information in the electro-electronic industry. There are several materials that exhibit soft magnetic properties, and we highlight the amorphous alloys and that ones obtained by partial crystallization, so-called nanocrystalline materials. The production of these alloys as magnetic ribbons is very common in scientific and technological area, but there are just a few works related to the production of these alloys as thin films. In this work, we studied the quasi-static magnetic properties of ferromagnetic thin films based on FeCuNbSiB in a wide range of thicknesses, from 20 to 500 nm, produced by sputtering. In particular, after the structural characterization performed via X-ray diffraction, the magnetic properties of the sets of samples were investigated using experimental magnetization curve, obtained using a vibrating sample magnetometer, as well as through theoretical curves obtained by theoretical modeling and numerical computation. The modeling process is based on the Stoner Wohlfarth model applied to three dimensions, and adds some energy terms, using as reference experimental results of magnetization. In this case, from the comparison between theoretical and experimental results and the analysis of the constant anisotropy behavior as a function of film thickness, we aim to obtain further information on the magnetization process of the samples, to identify routes for the production of thin films and develop a theoretical to films to use it, in the future, in the obtainment of the theoretical curves of some magnetic measurements, such as magnetoimpedance and magnetoresistance
Resumo:
We study magnetic interface roughness in F/AF bilayers. Two kinds of roughness were considered. The first one consists of isolated defects that divide the substrate in two regions, each one with an AF sub-lattice. The interface exchange coupling is considered uniform and presents a sudden change in the defects line, favoring Neel wall nucleation. Our results show the interface field dependence of the threshold thickness for the reorientation of the magnetization in the ferromagnetic film. Angular profiles show the relaxation of the magnetization, from Neel wall, at the interface, to reoriented state, at the surface. External magnetic field, perpendicular to the easy axis of the substrate, favors the reoriented state. Depending, of the external magnetic field intensity, parallel to the easy axis of the AF, the magnetization profile at surface can be parallel or perpendicular to the field direction. The second one treats of distributed deffects, periodically. The shape hysteresis curves, exchange bias and coercivity were characterized by interface field intensity and roughness pattern. Our results show that dipolar effects decrease the exchange bias and coercivity
Resumo:
Oral and facial bone defects can undertake appearance, psychosocial well-being and stomathognatic function of its patients. Over the yerars several strategies for bone defect regeneration have arised to treat these pathologies, among them the use of frozen and irradiated bone allograft. Manipulation of bone grafts it s not determined yet, and several osteotomy alternatives can be observed. The present work evaluated with a microscope the bone fragments obtained from different osteotomy methods and irrigation on rings and blocks allografts irradiated and frozen at 80° negative in a rabbit model. The study is experimental in vitro and it sample was an adult male New Zealand rabbit. The animal was sacrificed to obtain long bones, that were submitted to freezing at 80º negative and irradiated with Cobalt- 60. Then the long bones were sectioned into 24 bone pieces, divided into 4 groups: G1 (n=06) osteotomy was performed with bur No. 6 forming rings with 5 mm thickness with high-speed handpiece with manual irrigation; G2 (n=06) osteotomy was performed with bur No. 6 forming rings with 5 mm thick with surgical motor with a manual irrigation rotation 1500 rpm; GA (n=06), osteotomy with trephine using manual irrigation with saline; and GB (n=06), osteotomy with trephine using saline from peristaltic pumps of surgical motor. Five bone pieces of each group were prepared for analysis on light microscopy (LM) and one on electronic scan electronic microscopy (SEM). On the SEM analysis edges surface, presence of microcracks and Smear Layer were evaluated. Analyzing osteotomy technics on SEM was observed: increased presence of microcracks cutting with high speed; increased presence of areas covered by Smear Layer when cutting with motor implant. The irrigation analysis with SEM was observed: that the presence of microcracks does not depend on the type of irrigation; on manual irrigation, there was greater discrepancy between the cutting lines. The descriptive analysis of the osteotomy and irrigation process on LM showed: histological analysis showing the bony margins with clear tissue changed layer, composed of blackened tissue of charred appearance near to the cortical bone; on the edges of the bony part, bone fragments that were displaced during the bone cut and bone irregularities were observed. After analysis of results we can conclude: that there was greater regularity of the bone cut using high-speed handpiece than using motor implant; the cut with trephine using saline irrigated from peristaltic pumps of surgical motor showed greater homogeneity when compared with manual irrigation; charred tissue was found in all obtained bone samples, whit no significant statistically difference on the proportion of carbonization of the two analysed technics
Resumo:
We report a theoretical investigation of the magnetic phases and hysteresis of exchange biased ferromagnetic (F) nanoelements for three di erent systems: exchange biased nanoparticles, exchange biased narrow ferromagnetic stripes and exchange biased thin ferromagnetic lms. In all cases the focus is on the new e ects produced by suitable patterns of the exchange energy coupling the ferromagnetic nanoelement with a large anisotropy antiferromagnetic (AF) substrate. We investigate the hysteresis of iron and permalloy nanoparticles with a square basis, with lateral dimensions between 45 nm and 120 nm and thickness between 12 nm and 21 nm. Interface bias is aimed at producing large domains in thin lms. Our results show that, contrary to intuition, the interface exchange coupling may generate vortex states along the hysteresis loop. Also, the threshold value of the interface eld strength for vortex nucleation is smaller for iron nanoelements. We investigate the nucleation and depinning of an array of domain walls pinned at interface defects of a vicinal stripe/AF bilayer. The interface exchange eld displays a periodic pattern corresponding to the topology of the AF vicinal substrate. The vicinal AF substrate consists of a sequence of terraces, each with spins from one AF subalattice, alternating one another. As a result the interface eld of neighboring terraces point in opposite direction, leading to the nucleation of a sequence of domain walls in the ferromagnetic stripe. We investigated iron an permalloy micrometric stripes, with width ranging from 100 nm and 300 nm and thickness of 5 nm. We focused in domain wall sequences with same chirality and alternate chirality. We have found that for 100nm terraces the same chiraility sequence is more stable, requiring a larger value of the external eld for depinning. The third system consists of an iron lm with a thickness of 5 nm, exchange coupled to an AF substrate with a periodic distribution of islands where the AF spins have the opposite direction of the spins in the background. This corresponds to a two-sublattice noncompensated AF plane (such as the surface of a (100) FeF2 lm), with monolayer-height islands containing spins of one sublattice on a surface containing spins of the opposite sublattice. The interface eld acting in the ferromagnetic spins over the islands points in the opposite direction of that in the spins over the background. This a model system for the investigation of interface roughness e ects. We have studied the coercicivity an exchange bias hysteresis shift as a function of the distance between the islands and the degree of interface roughness. We have found a relevant reduction of coercivity for nearly compensated interfaces. Also the e ective hysteresis shift is not proportional to the liquid moment of the AF plane. We also developed an analytical model which reproduces qualitatively the results of numerical simulations