2 resultados para Oscillatory behavior

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents an analysis of the control law based on an indirect hybrid scheme using neural network, initially proposed for O. Adetona, S. Sathanathan and L. H. Keel. Implementations of this control law, for a level plant of second order, was resulted an oscillatory behavior, even if the neural identifier has converged. Such results had motivated the investigation of the applicability of that law. Starting from that, had been made stability mathematical analysis and several implementations, with simulated plants and with real plants, for analyze the problem. The analysis has been showed the law was designed being despised some components of dynamic of the plant to be controlled. Thus, for plants that these components have a significant influence in its dynamic, the law tends to fail

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoscale materials composed of boron, nitrogen, and carbon have unique properties and may be useful in new technologies. In this thesis, we investigate some properties of BCN nanoribbons constructed according to the Fibonacci quasiperiodic sequence. We analyze properties such as structural stability, electronic density of states, electronic specific heat, band structure, and energy band gap. We have performed first-principles calculations based on density functional theory implemented in the SIESTA code. The results showed that nanoribbons present a fixed value of the formation energy. The electronic density of states was used to calculate the specific heat. We found an oscillatory behavior of the electronic specific heat, in the low temperature regime. We analyze the electronic band structure to determine the energy band gap. The energy band gap oscillates as a function of the Fibonacci generation index n. Our work suggest that appropriate choice of the building block materials of the quasiperiodic sequence, may lead to a tuneable band gap of the quasiperiodic nanoribbons.