3 resultados para Organophosphate, occupational exposure, baseline
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This study aimed to verify the prevalence of lip and perioral lesions in worker who were under sunshine on the beaches of Natal/RN and to investigate possible associations of these with sociodemographic, occupational and general health variables. For this, 362 individuals who had one of the urban beaches (Ponta Negra / Environment / Redinha) in the city of Natal/RN as a working environment in the study. We excluded people under 18 years old. Data collection was done through epidemiological analysis and extra-oral validated questionnaire with questions that characterize socioeconomic and demographic factors, occupational exposure and general health. The male subjects (72.6%) were the majority in the sample. The people who worked directly exposed to high peaks of ultraviolet radiation, as well as informal workers predominated. Considering the total sample of individuals, ephelides in the perioral region (33.7%) and labial region (24.0%), solar lentigo perioral (15.2%) and actinic cheilitis (13.8%) stood out as the most prevalent lesions. Indoor workers and those who had a habit occurrence of injuries by 19% and 21% respectively higher when compared to outdoor workers and people without habits. The variable use of cap / hat was associated with the presence of cold sores (Qui2 = 1,328, p = 0,058). On the threshold of significance, the type of work was also associated with lesions in lip occurrence (p = 0,042). Men showed a lower incidence of perioral lesions when compared to female workers (PR=0,716, p valor = 0,002). The present study showed high prevalence of lip and perioral lesions. The premalignant lesions were the most identified, both as in lip skin. It is important therefore to be encouraged to adopt protective measures against excessive sun exposure, fairly and consistently
Resumo:
Brazil is among the largest cashew nut producers of the world. However, the roasting process is still carried out artisanally, especially in the Brazilian semiarid region. In face of this occupational problem, the aim of this study was to perform a physical-chemical characterization of the particulate matter (PM) emitted by the roasting of cashew nuts, as well as to determine the occupational risk and molecular mechanisms associated. The most evident PM characteristics were the prevalence of fine particles, typical biomass burning morphologies such as tar ball and the presence of the elements K, Cl, S, Ca and Fe. In addition, atmospheric modeling analyses suggest that these particles can reach neighboring regions of the emission source. Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic potential, such as benzo[a]pyrene, dibenz[a,h]anthracene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and benzo[j]fluoranthene were the most abundant PAHs found in the two air monitoring campaigns. Among the identified oxy-PAH the benzanthrone (7H-benz[d,e]anthracen-7-one) had the highest concentration and the evaluation of lifetime cancer risk showed an increase of 12 to 37 cases of cancer for every 10,000 exposed people. Chemical analysis of roasted cashew nuts identified the PAHs: phenanthrene, benzo[g,h,i]perylene, pyrene and benzo[a]pyrene, besides the 3-pentadecilfenol allergen (urushiol analogue) as prevalent. Occupational exposure to PAHs was confirmed by the increase of urinary 1-hydroxypyrene levels and genotoxic effects were evidenced by the increase on micronuclei and nuclear bud frequency in exfoliated buccal mucosa cells among the exposed workers. Other biomarkers of effects such as karyorrhexis, pyknotic, karyolytic, condensed chromatin and binucleated cells also have their frequencies increased when compared to an unexposed control group. The investigation of the molecular mechanisms associated with the PM organic extract showed cytotoxicity in human lung cell lines (A549) at concentrations ≥ 4 nM BaPeq. Using non-cytotoxic doses the extract was able to activate proteins involved in the DNA damage response pathway (Chk1 and p53). Moreover, the specific contribution of the four most representative PAHs in the cashew nut roasting sample showed that benzo[a]pyrene was the most efficient to activate Chk1 and p53. Finally, the organic extract was able to increase persistently the mRNA expression involved in the PAHs metabolism (CYP1A1 and CYP1B1), inflammatory response (IL-8 and TNF-α) and cell cycle arrest (CDKN1A) for DNA repair (DDB2). The high PM concentrations and its biological effects associated warn of the serious harmful effects of artisanal cashew nut roasting and urgent actions should be taken to the sustainable development of this activity.
Resumo:
Brazil is among the largest cashew nut producers of the world. However, the roasting process is still carried out artisanally, especially in the Brazilian semiarid region. In face of this occupational problem, the aim of this study was to perform a physical-chemical characterization of the particulate matter (PM) emitted by the roasting of cashew nuts, as well as to determine the occupational risk and molecular mechanisms associated. The most evident PM characteristics were the prevalence of fine particles, typical biomass burning morphologies such as tar ball and the presence of the elements K, Cl, S, Ca and Fe. In addition, atmospheric modeling analyses suggest that these particles can reach neighboring regions of the emission source. Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic potential, such as benzo[a]pyrene, dibenz[a,h]anthracene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and benzo[j]fluoranthene were the most abundant PAHs found in the two air monitoring campaigns. Among the identified oxy-PAH the benzanthrone (7H-benz[d,e]anthracen-7-one) had the highest concentration and the evaluation of lifetime cancer risk showed an increase of 12 to 37 cases of cancer for every 10,000 exposed people. Chemical analysis of roasted cashew nuts identified the PAHs: phenanthrene, benzo[g,h,i]perylene, pyrene and benzo[a]pyrene, besides the 3-pentadecilfenol allergen (urushiol analogue) as prevalent. Occupational exposure to PAHs was confirmed by the increase of urinary 1-hydroxypyrene levels and genotoxic effects were evidenced by the increase on micronuclei and nuclear bud frequency in exfoliated buccal mucosa cells among the exposed workers. Other biomarkers of effects such as karyorrhexis, pyknotic, karyolytic, condensed chromatin and binucleated cells also have their frequencies increased when compared to an unexposed control group. The investigation of the molecular mechanisms associated with the PM organic extract showed cytotoxicity in human lung cell lines (A549) at concentrations ≥ 4 nM BaPeq. Using non-cytotoxic doses the extract was able to activate proteins involved in the DNA damage response pathway (Chk1 and p53). Moreover, the specific contribution of the four most representative PAHs in the cashew nut roasting sample showed that benzo[a]pyrene was the most efficient to activate Chk1 and p53. Finally, the organic extract was able to increase persistently the mRNA expression involved in the PAHs metabolism (CYP1A1 and CYP1B1), inflammatory response (IL-8 and TNF-α) and cell cycle arrest (CDKN1A) for DNA repair (DDB2). The high PM concentrations and its biological effects associated warn of the serious harmful effects of artisanal cashew nut roasting and urgent actions should be taken to the sustainable development of this activity.