1 resultado para Operational amplifiers
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- JISC Information Environment Repository (2)
- Repository Napier (4)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (4)
- Archive of European Integration (44)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (56)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (73)
- CentAUR: Central Archive University of Reading - UK (49)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (30)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (20)
- CORA - Cork Open Research Archive - University College Cork - Ireland (11)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (17)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (11)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (32)
- Queensland University of Technology - ePrints Archive (249)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (26)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (36)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (1)
- Université Laval Mémoires et thèses électroniques (2)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (72)
- University of Queensland eSpace - Australia (5)
- University of Southampton, United Kingdom (2)
- WestminsterResearch - UK (4)
Resumo:
In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®