4 resultados para Object Segmentation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MAIDL, André Murbach; CARVILHE, Claudio; MUSICANTE, Martin A. Maude Object-Oriented Action Tool. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desde os descobrimentos pioneiros de Hubel e Wiesel acumulou-se uma vasta literatura descrevendo as respostas neuronais do córtex visual primário (V1) a diferentes estímulos visuais. Estes estímulos consistem principalmente em barras em movimento, pontos ou grades, que são úteis para explorar as respostas dentro do campo receptivo clássico (CRF do inglês classical receptive field) a características básicas dos estímulos visuais como a orientação, direção de movimento, contraste, entre outras. Entretanto, nas últimas duas décadas, tornou-se cada vez mais evidente que a atividade de neurônios em V1 pode ser modulada por estímulos fora do CRF. Desta forma, áreas visuais primárias poderiam estar envolvidas em funções visuais mais complexas como, por exemplo, a separação de um objeto ou figura do seu fundo (segregação figura-fundo) e assume-se que as conexões intrínsecas de longo alcance em V1, assim como as conexões de áreas visuais superiores, estão ativamente envolvidas neste processo. Sua possível função foi inferida a partir da análise das variações das respostas induzidas por um estímulo localizado fora do CRF de neurônios individuais. Mesmo sendo muito provável que estas conexões tenham também um impacto tanto na atividade conjunta de neurônios envolvidos no processamento da figura quanto no potencial de campo, estas questões permanecem pouco estudadas. Visando examinar a modulação do contexto visual nessas atividades, coletamos potenciais de ação e potenciais de campo em paralelo de até 48 eletrodos implantados na área visual primária de gatos anestesiados. Estimulamos com grades compostas e cenas naturais, focando-nos na atividade de neurônios cujo CRF estava situado na figura. Da mesma forma, visando examinar a influência das conexões laterais, o sinal proveniente da área visual isotópica e contralateral foi removido através da desativação reversível por resfriamento. Fizemos isso devido a: i) as conexões laterais intrínsecas não podem ser facilmente manipuladas sem afetar diretamente os sinais que estão sendo medidos, ii) as conexões inter-hemisféricas compartilham as principais características anatômicas com a rede lateral intrínseca e podem ser vistas como uma continuação funcional das mesmas entre os dois hemisférios e iii) o resfriamento desativa as conexões de forma causal e reversível, silenciando temporariamente seu sinal, permitindo conclusões diretas a respeito da sua contribuição. Nossos resultados demonstram que o mecanismo de segmentação figurafundo se reflete nas taxas de disparo de neurônios individuais, assim como na potência do potencial de campo e na relação entre sua fase e os padrões de disparo produzidos pela população. Além disso, as conexões laterais inter-hemisféricas modulam estas variáveis dependendo da estimulação feita fora do CRF. Observamos também uma influência deste circuito lateral na coerência entre potenciais de campo entre eletrodos distantes. Em conclusão, nossos resultados dão suporte à ideia de um mecanismo complexo de segmentação figura-fundo atuando desde as áreas visuais primárias em diferentes escalas de frequência. Esse mecanismo parece envolver grupos de neurônios ativos sincronicamente e dependentes da fase do potencial de campo. Nossos resultados também são compatíveis com a hipótese que conexões laterais de longo alcance também fazem parte deste mecanismo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented