5 resultados para Nymphalidae.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Butterflies are insects known, in a variety of environments and for easy visual identification. The adult form may be frequently found in flowers looking for nectar. However, for many species of Heliconius (Lepidoptera, Nymphalidae) to visit the flower also represents the collecting of pollen, an important source of protein for adults. The protein obtained from the pollen allows the maintenance of physiological processes that increase the performance of the individual, promoting greater longevity and egg production. For males, proteins can also be part in your investment in reproductive success and fitness of offspring through a nutritional contribution that is transferred to the female in the act of mating as a nuptial present. It is known that this protein contains essential to the performance of the female oviposition, however the proportion of content and specific importance to the monogamous and polygamous species is not known yet. Whereas the species studied in this work have different patterns of mating in the strategy was to verify a significant difference in the quality of the spermatophore, and H. erato and H. melpomene, on the amount of protein present in this structure, indicating a difference in investment between the male reproductive strategies
Resumo:
Extensive studies using molecular markers on butterflies have shown how a highly fragmented landscape may result in the reduction of gene flow among patches of habitat and, consequently, increase genetic differentiation among populations. However, little is known about Heliconius geographical structure and the effects of fragmentation on the connectivity of populations. Furthermore, findings on the effects of the population structure on the dynamics of mimicry evolution in Heliconius butterflies need to be tested in H. erato and H. melpomene specimens found in other locations other than Central and northern South Americas. For the present study, we had two motivations: (1) compare the population structure of H. erato and H. melpomene given the highly fragmented Brazil s Atlantic Forest habitat; and (2) studying population structure of co-mimics could give us insights into the dynamics of mimicry evolution. For this, we analysed the spatial structure and connectivity of eight populations of Heliconius butterflies, in a total of 137 H. erato specimens and 145 H. melpomene specimens, using nine microsatellites loci, 1144 AFLPs markers and 282 mitochondrial DNA sequences. In general, both species exhibited evidence of population subdivision but no isolation by distance indicating some extent of genetic differentiation among populations. Contrary to Kronforst & Gilbert s (2008) Costa Rican Heliconius, H. melpomene exhibited more genetic differentiation than H. erato based on nuclear markers. However, for mitochondrial DNA, H. erato populations showed more genetic differentiation than H. melpomene. Our results corroborate to other studies on Heliconius butterflies concerning the pronounced population subdivision and local genetic drift found in this genus. Nevertheless, the pattern of this differentiation varies significantly from the pattern found in studies conducted in Central America, where H. erato is generally more differentiated and structured than H. melpomene, based on nuclear markers. This different pattern may reflect different evolutionary histories of Heliconius species in Northeastern Brazil s Atlantic Forest
Resumo:
Tropical environments often face strong seasonal variations in climate, such as alternate periods of dry and rain, that may often be important influence in the annual X the organisms lives. Here we assess how population dynamics of two butterfly species (Heliconius erato and Heliconius mepomene) respond to environmental and seasonal variations. A mark-release-recapture study carried out in an Atlantic forest reserve, 15 Km from Natal, Rio Grande do Norte, Brazil, for 3 years, during the dry and rainy season, with three visits weekly done. Information such as species, wing lenght, site of capture, pollen load and phenotype (number of spots) (in H. erato only) were noted for each capture. Seasonal variation exists in capture rates of the two species, with great capture rates during the rainy season. Despite finding differences in the mean density of individuals of the two species among the different collection areas, this difference was only significant between floodplain and central areas, and no influence of seasonality was observed in the mean density between the areas. Seasonality in wing size was only observed for H. erato, with larger wings during the rainy season. Females carried larger pollen loads than males both species, but species were similar. Only males differed seasonally, with larger pollen loads during the rainy season. The distribution of the number of wing spots did not vary between the dry and rainy seasons, and the number of spots in males and females was similar. Therefore, we conclude that there was a strong influence of seasonal variation in the population dynamic of the two Heliconius species, as well as in several aspects of their biology
Resumo:
Butterflies are insects known, in a variety of environments and for easy visual identification. The adult form may be frequently found in flowers looking for nectar. However, for many species of Heliconius (Lepidoptera, Nymphalidae) to visit the flower also represents the collecting of pollen, an important source of protein for adults. The protein obtained from the pollen allows the maintenance of physiological processes that increase the performance of the individual, promoting greater longevity and egg production. For males, proteins can also be part in your investment in reproductive success and fitness of offspring through a nutritional contribution that is transferred to the female in the act of mating as a nuptial present. It is known that this protein contains essential to the performance of the female oviposition, however the proportion of content and specific importance to the monogamous and polygamous species is not known yet. Whereas the species studied in this work have different patterns of mating in the strategy was to verify a significant difference in the quality of the spermatophore, and H. erato and H. melpomene, on the amount of protein present in this structure, indicating a difference in investment between the male reproductive strategies
Resumo:
An organisms movement within and between habitats is an essential trait of life history, one that shapes population dynamics, communities and ecosystems in space and time. Since the ability to perceive and react to specific conditions varies greatly between organisms, different movement patterns are generated. These, in turn, will reflect the way species persist in the original habitat and surrounding patches. This study evaluated patterns of movement of frugivorous butterflies in order to estimate the connectivity of a landscape mosaic in an area of Atlantic Forest. For this purpose, we used the capture-mark-recapture method on butterflies trapped with fermented fruit bait in three distinct habitats. The first represents a typical Atlantic forest fragment, while the other two represent man-made matrix habitats. One contains a coconut plantation and the other a plantation of the exotic Acacia mangium species. Five traps were randomly placed in each landscape unit in areas of 40 x 40m. Using recapture data and relating it to distance between captures and habitat structure, I found that movement frequencies, both within and between landscape units were different for the analyzed species, suggesting that they do not interpret and react to the landscape in the same way. Thus this study was able to measure landscape functional connectivity. For most species, the exchange between forest and coconut plantations occurred with low frequency compared to exchanges between the forest and acacia plantations, which share more structural similarities. This seems to indicate that a matrix that is more similar to patches of native vegetation can shelter species, permit their movement and, consequently, contribute to the landscape connectivity