2 resultados para Nonlinear vibration isolation system
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This master dissertation presents the development of a fault detection and isolation system based in neural network. The system is composed of two parts: an identification subsystem and a classification subsystem. Both of the subsystems use neural network techniques with multilayer perceptron training algorithm. Two approaches for identifica-tion stage were analyzed. The fault classifier uses only residue signals from the identification subsystem. To validate the proposal we have done simulation and real experiments in a level system with two water reservoirs. Several faults were generated above this plant and the proposed fault detection system presented very acceptable behavior. In the end of this work we highlight the main difficulties found in real tests that do not exist when it works only with simulation environments
Resumo:
Slugging is a well-known slugging phenomenon in multiphase flow, which may cause problems such as vibration in pipeline and high liquid level in the separator. It can be classified according to the place of its occurrence. The most severe, known as slugging in the riser, occurs in the vertical pipe which feeds the platform. Also known as severe slugging, it is capable of causing severe pressure fluctuations in the flow of the process, excessive vibration, flooding in separator tanks, limited production, nonscheduled stop of production, among other negative aspects that motivated the production of this work . A feasible solution to deal with this problem would be to design an effective method for the removal or reduction of the system, a controller. According to the literature, a conventional PID controller did not produce good results due to the high degree of nonlinearity of the process, fueling the development of advanced control techniques. Among these, the model predictive controller (MPC), where the control action results from the solution of an optimization problem, it is robust, can incorporate physical and /or security constraints. The objective of this work is to apply a non-conventional non-linear model predictive control technique to severe slugging, where the amount of liquid mass in the riser is controlled by the production valve and, indirectly, the oscillation of flow and pressure is suppressed, while looking for environmental and economic benefits. The proposed strategy is based on the use of the model linear approximations and repeatedly solving of a quadratic optimization problem, providing solutions that improve at each iteration. In the event where the convergence of this algorithm is satisfied, the predicted values of the process variables are the same as to those obtained by the original nonlinear model, ensuring that the constraints are satisfied for them along the prediction horizon. A mathematical model recently published in the literature, capable of representing characteristics of severe slugging in a real oil well, is used both for simulation and for the project of the proposed controller, whose performance is compared to a linear MPC