7 resultados para Non-traditional products
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
OLIVEIRA, E. L. et al. Use of Fibres obtained from the Cashew (Anacardium ocidentale, L) and Guava (Psidium guayava) Fruits for Enrichment of Food Products. Brazilian Archives of Biology and Technology, Curitiba, PR, v. 48, p. 143-150, 2005.
Resumo:
MELO, Maxymme Mendes de ; PINHEIRO, Andrea Santos ; NASCIMENTO, R. M. ; MARTINELLI, Antonio Eduardo ; DUTRA, Ricardo Peixoto Suassuna ; MELO, Marcus Antônio de Freitas . Análise microestrutural de misturas cerâmicas de grês Porcelanato com adição de chamote de telhas cerâmicas. Cerâmica (São Paulo. Impresso), v. 55, p. 356-364, 2009
Resumo:
The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.
Resumo:
Bioidentical hormones are defined as compounds that have exactly the same chemical and molecular structure as hormones that are produced in the human body. It is believed that the use of hormones may be safer and more effective than the non-bioidentical hormones, because binding to receptors in the organism would be similar to the endogenous hormone. Bioidentical estrogens have been used in menopausal women, as an alternative to traditional hormone replacement therapy. Thermal data of these hormones are scarce in literature. Thermal analysis comprises a group of techniques that allows evaluating the physical-chemistry properties of a drug, while the drug is subjected to a controlled temperature programming. The thermal techniques are used in pharmaceutical studies for characterization of drugs, purity determination, polymorphism identification, compatibility and evaluation of stability. This study aims to characterize the bioidentical hormones estradiol and estriol through thermal techniques TG/DTG, DTA, DSC, DSC-photovisual. By the TG curves analysis was possible to calculated kinetic parameters for the samples. The kinetic data showed that there is good correlation in the different models used. For both estradiol and estriol, was found zero order reaction, which enabled the construction of the vapor pressure curves. Data from DTA and DSC curves of melting point and purity are the same of literature, showed relation with DSC-photovisual results. The analysis DTA curves showed the fusion event had the best linearity for both hormones. In the evaluation of possible degradation products, the analysis of the infrared shows no degradation products in the solid state
Resumo:
OLIVEIRA, E. L. et al. Use of Fibres obtained from the Cashew (Anacardium ocidentale, L) and Guava (Psidium guayava) Fruits for Enrichment of Food Products. Brazilian Archives of Biology and Technology, Curitiba, PR, v. 48, p. 143-150, 2005.
Resumo:
MELO, Maxymme Mendes de ; PINHEIRO, Andrea Santos ; NASCIMENTO, R. M. ; MARTINELLI, Antonio Eduardo ; DUTRA, Ricardo Peixoto Suassuna ; MELO, Marcus Antônio de Freitas . Análise microestrutural de misturas cerâmicas de grês Porcelanato com adição de chamote de telhas cerâmicas. Cerâmica (São Paulo. Impresso), v. 55, p. 356-364, 2009
Resumo:
The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.