8 resultados para Native Vegetation Condition, Benchmarking, Bayesian Decision Framework, Regression, Indicators
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
An organisms movement within and between habitats is an essential trait of life history, one that shapes population dynamics, communities and ecosystems in space and time. Since the ability to perceive and react to specific conditions varies greatly between organisms, different movement patterns are generated. These, in turn, will reflect the way species persist in the original habitat and surrounding patches. This study evaluated patterns of movement of frugivorous butterflies in order to estimate the connectivity of a landscape mosaic in an area of Atlantic Forest. For this purpose, we used the capture-mark-recapture method on butterflies trapped with fermented fruit bait in three distinct habitats. The first represents a typical Atlantic forest fragment, while the other two represent man-made matrix habitats. One contains a coconut plantation and the other a plantation of the exotic Acacia mangium species. Five traps were randomly placed in each landscape unit in areas of 40 x 40m. Using recapture data and relating it to distance between captures and habitat structure, I found that movement frequencies, both within and between landscape units were different for the analyzed species, suggesting that they do not interpret and react to the landscape in the same way. Thus this study was able to measure landscape functional connectivity. For most species, the exchange between forest and coconut plantations occurred with low frequency compared to exchanges between the forest and acacia plantations, which share more structural similarities. This seems to indicate that a matrix that is more similar to patches of native vegetation can shelter species, permit their movement and, consequently, contribute to the landscape connectivity
Resumo:
The production of the red pottery brick, made traditionally with clay, is a technique that is already stabled. However, in spite of the little complexity that involves the conventional process of these bricks production, it are exposed to many problems that begin in the fase of exploration of the mines, the problems get worse because of the lack of the clay's characterization, and they continue through the steps of the dough preparation, conformation of the products, the drying and the burning process. The wastefulness is shown and so is the low quality of the material produced. Among other factors, the high use of energy in the burning makes the cost of this material inaccessible to the low income consumer. Besides this, the destruction of the environment around the mines and the use of native vegetation to produce wood - the most used fuel in the pottery industry - make serious environmental damage. The production technique of a new type of simple brick (adobe), that has low cost and no environmental damage, can be the viable altemative to lower the cost of this part of the civil construction, and, consequently, in the building of cheaper houses. In this paper, the results of the mechanical resistance of the adobe brick are shown, using in its composition, clay, natural vegetable fibers, cement and plaster in a process that is completely handcrafted and manual. It is intented to make clear that are possible alternatives to be put in practice, with the simple process, using "raw earth" that has been used in the construction of houses in thousands of years, trying to solve these severe problems. Analysis and tests were performed to find results that could prove the possibility of the utilization of this kind of material. Other studies are in progress, and the new researches are necessary to enrich this work, but it stays the certainty that there is potential to produce bricks from adobe, as an alternative that has low cost to civil construction
Resumo:
In northeastern semiarid, seasonality on precipitation temporal distribution, high intensity storm events and inadequate management of native vegetation can promote soil erosion. Vegetation removal causes soil surface exposure, reduces soil water storage capacity and can be the source degradation processes. In this context, this approach aims to analyze water and soil erosion processes on a 250 m2 undisturbed experimental plot with native vegetation, slope 2.5% by using 2006 and 2007 monitoring data. The site was instrumented to monitor rainfall, overland flow runoff and erosion by using a 5 m³ tank downstream the plot. Soil erosion monitoring was made by transported sediment and organic matter collection after each event. Field infiltration experiments were made at 16 points randomly distributed within the plot area by using a constant head infiltrometer during drought and rainy seasons, respectively. Infiltration data revealed high spatial and temporal variability. It was observed that during the beginning of the rainy period, 77% of the events showed runoff coefficient less than 0.05. As the rainy season began, soil water increase produced annual species germination. High intensity storms resulted in runoff coefficients varying between 0.33 and 0.42. Once the annual species was established, it was observed that approximately 39% of the events produced no runoff, which reflects an increase on soil water retention capacity caused by the vegetation. A gradual runoff reduction during the rainy season emphasizes the effect of vegetative density increase. Soil erosion observed data allowed to fit an empirical relationship involving soil loss and precipitation height, which was used to analyze the plot installation impact on soil erosion. Observed soil loss in 2006 and 2007 was 230 Kg/ha and 54 Kg/ha, respectively
Resumo:
The municipality of Guamaré is located on the north coast of RN, Salineira zone, with a land area of 259 km2 and a population of approximately 12,500 inhabitants (IBGE, 2010). Presents strong morphological instability caused mainly by the influence of human activities in the region. The present study aims to assess the existing levels of salts in the springs of the region, by evaluating the electrical conductivity, pH, salinity, chlorides, hardness, calcium, magnesium and heavy metals in the water. The collection and analysis methods adopted in the survey are based on APHA (2005). The electrical conductivity, salinity and chloride behaved similarly throughout the study. Some points suffered the direct effect of the salt ponds and others. Given the existence of a drainage ditch between the saline and monitored region, there was little change in the environment, including the native vegetation. The opposite situation occurred in farms where the region is fully committed local vegetation and water holes and wells used in the past for domestic use are practically disabled (high salt content). In Rio Miassaba formation of an estuary is reversed, with the farther out from the sea showing higher salt concentracions, which may be associated with the discharge of organic matter and natural evaporation rate. In periods of no rainfall had a few points higher than the levels of salts found in seawater and may be associated with high evaporation in the region. Detected a positive factor is the high resilience and reducing salt, after periods of rainfall incidence
Resumo:
The human interference in the semiarid region of Seridó Potiguar has promoted the increase of degraded areas. The economic dynamic that was established in the Seridó territory, especially after the fall of the trinomial cattle-cotton-mining in the 70s and 80s of the 20th century as pillars of the regional economy, resulted in an accelerated process of erosion of natural resources. The municipalities of the Seridó region have been spatially reordered by this new economic dynamic, marked by the growth of existing enterprises, and the development of new agricultural practices. One of the municipalities in the region that restructured its territorial space with the emergence of new agro-industrial activities was the town of Parelhas. With the demise of the trinomial cattle-cotton-mining in the 1980s, other productive activities were intensified from the 1990s, amongst them, pottery, responsible for the vegetal extraction for use as energy source. This recent economic and spatial restructuring in the region, reflected in the Parelhense municipal territory, required new productive ingredients responsible for the modification of past production relations that were based on cattle, cotton and mining. By that a process of exploring the environment was unleashed, especially the native vegetation, in an uncontrolled manner. In this context, the objective of this study was to survey and detect deforestation in the areas of Caatinga vegetation, used indiscriminately as energy supply for new agricultural practices, using remote sensing techniques based on the quantification of the Normalized Difference Vegetation Index / NDVI, Soil-Adjusted Vegetation Index / SAVI, surface temperature and rainfall data in the years 1990 and 2010. The results indicated that SAVI values above 0.2 in 1990 and 2010 represent the areas with the highest density of vegetation that occur exclusively along the major drainages in the town and areas of higher elevations. The areas between the ranges of values from 0.5 to 0.15 SAVI are areas with poor vegetation. On the other hand the highest values of temperature are distributed in the western and southeastern parts of the township, usually in places where the soil is exposed or there is sparse vegetation. The areas of bare soil decreased in extension in 2010 at 11, 6% when related to 1990, this was caused by a higher rainfall intensity in the first half of 2010, but no regeneration of vegetation occurred in some places in the western and southeastern areas of the municipality today, due to the extraction of firewood to fuel the furnaces of industries in town
Resumo:
The final disposal of municipal solid waste in unsuitable areas without an infrastructure that meets the health measures and environmental protection, coupled with the lack of technical criteria in phase and decommissioning of the dump can promote environmental degradation. Alternatively to minimize the impacts of this activity for the stabilization of the area by isolating the massive waste with implementation of an adequate and finished by a layer of soil for plant growth final cover system. In this context, the present study aimed to evaluate the quality of the final cover in the area of a disabled dump the tropical semi-arid region in order to assist the process of recovery of these areas. The study area is located in the tropical semi-arid region in São João do Sabugi /RN. Soil samples were collected in the dump area and bushland as a benchmark of quality. To which they were subjected to analysis of physical attributes (particle density, bulk density, grain size and porosity), chemical properties (pH, K + , Na+ , Ca2 + , Mg2 + and Al3 + exchangeable, potential acidity, available phosphorus, sum of bases, CEC, base saturation, aluminum saturation, saturation Na + and adsorption ratio sodium, total organic carbon and total nitrogen) and total and soluble concentrations of heavy metals (Mn, Pb, Zn, Cd, Cu, Mo, Co, Cr, Ba and Ni). The differences between physical and chemical soil under native forest and final cover showing reduction of soil quality in the area off to the dump, which hinders the development of native vegetation and the recovery of the area. The absence of superior waterproofing to allow vertical transfer between the solid waste and the final cover promoted enrichment by chemical elements and heavy metals in excess can impair revegetation. Deficiencies found in the construction process of the final cover point to the need for intervention to accelerate the process of stabilization and recovery of the area of the local ecosystem
Resumo:
The Caatinga and Atlantic Forest exhibit great species richness, which can attend requirements for various uses. Considering the current level of degradation of vegetation in Rio Grande do Norte, and the increasing use of exotic species, it is urgent to perform actions for the conservation of these biomes. From this perspective, using native plant species in the urban forestry becomes an instrument for the conservation and enhancement of local biodiversity. In this context, the general objective of this study is to gather and provide information about the ornamental native tree species in the state in order to promote and disseminate their use in urban areas. Specific aims of this work are: (1) evaluate and verify the demand and maintenance costs of native and exotic urban forestry, comparatively, with data obtained in the state (Cap. 1); (2) Provide a ornamental native tree species list in the state, including species already widespread use and suggesting new elements with ornamental potential (Cap. 2); and (3) produce a guide of native tree species as a means of disseminating the results obtained in a way accessible to the society. Analysis of maintenance of urban trees was performed at the UFRN's Central Campus, and the ornamental native tree species survey was carried out through literature survey combined with expeditions to forest fragments in the state. As a result, it was obvious that the maintenance of native vegetation resulted in lower costs and least demand for services highlighting the visible advantage in using a afforestation with regionalized floristic composition. The survey of ornamental native tree species led to the selection of 95 species belonging to 30 families, 17 species (17.35%) occurring exclusively in the Caatinga, 27 species (25.55%) in the Atlantic Forest and more than half (55.10%) occurring in both biomes, which provides a good selection available for the composition of urban forestry, both for cities located in the area of Atlantic Forest (81 spp.) or for those located in the Caatinga (71 spp.). From these results, a guide for the recognition and cultivation of native ornamental trees was prepared, consisting in the initial step in the enhancement of existing floristic potential value with the aim to assist in the development of a regionalized perspective of urban environmental management in the state
Resumo:
Despite the numerous advantages resulting from the use of membrane filters technology, intrinsic limitations fouling process become relevant to its applicability. The control of operating conditions is an important tool to mitigate fouling and achieve good levels of efficiency. In this sense, the objective of this study was to investigate the effect of transmembrane pressure and concentrate flow in the performance of ultrafiltration, applied to the post-treatment of domestic sewage. The process was evaluated and optimized by varying the pressure (0.5 and 1.5 bar) and the concentrate flow (300 and 600 L/h), using a 22 factorial design, in order to investigate the effects on the permeate flow and quality of effluents generated at each operating condition. We evaluated the following quality indicators for permeate: pH, electrical conductivity, total suspended solids, turbidity, calcium and Chemical Oxygen Demand (COD). In all tests, we observed marked reduction in the permeate flux at the early stages, followed by a slow decline that lasted until it reaches a relatively constant level, around 120 minutes of filtration. The increased pressure resulted in a higher initial permeate flux, but the decrease of the flow with time is greater for tests at higher pressure, indicating a more pronounced fouling process. On the other hand, increasing the concentrate flow resulted in a slower decline in permeate flux with the filtration time. Regarding the quality of permeate, the transmembrane pressure of 0,5 bar was the one that allowed better results, and was statistically confirmed through the two-way ANOVA test with repeated measures, significant effect of pressure on the turbidity of the permeate. The concentrate flow, in turn, showed no significant influence on any of the quality parameters. Thus, we conclude that, from an economic and environmental point of view, it is more interesting to operate ultrafiltration membrane system with a lower concentrate flow associated with a low transmembrane pressure, since under these conditions will produce less waste, and the permeate will present lower concentrations of the analyzed constituent, especially lower turbidity.