4 resultados para Native Ecosystems
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The human activities responsible for the ambient degradation in the modern world are diverse. The industrial activities are preponderant in the question of the impact consequences for brazilian ecosystems. Amongst the human activities, the petroliferous industry in operation in Potiguar Petroliferous Basin (PPB) displays the constant risk of ambient impacts in the integrant cities, not only for the human populations and the environment, but also it reaches the native microorganisms of Caatinga ground and in the mangrove sediment. Not hindering, the elaboration of strategies of bioremediation for impacted areas pass through the knowledge of microbiota and its relations with the environment. Moreover, in the microorganism groups associated to oil, are emphasized the sulfate-reducing prokaryotes (SRP) that, in its anaerobic metabolism, these organisms participate of the sulfate reduction, discharging H2S, causing ambient risks and causing the corrosion of surfaces, as pipelines and tanks, resulting in damages for the industry. Some ancestries of PRS integrate the Archaea domain, group of microorganisms whose sequenced genomes present predominance of extremophilic adaptations, including surrounding with oil presence. This work has two correlated objectives: i) the detection and monitoring of the gene dsrB, gift in sulfate-reducing prokaryotes, through DGGE analysis in samples of mDNA of a mangrove sediment and semiarid soil, both in the BPP; ii) to relate genomic characteristics to the ecological aspects of Archaea through in silico studies, standing out the importance to the oil and gas industry. The results of the first work suggest that the petrodegraders communities of SRP persist after the contamination with oil in mangrove sediment and in semiarid soil. Comparing the populations of both sites, it reveals that there are variations in the size and composition during one year of experiments. In the second work, functional and structural factors are the probable cause to the pressure in maintenance of the conservation of the sequences in the multiple copies of the 16S rDNA gene. Is verified also the discrepancy established between total content GC and content GC of the same gene. Such results relating ribosomal genes and the ambient factors are important for metagenomic evaluations using PCR-DGGE. The knowledge of microbiota associated to the oil can contribute for a better destination of resources by the petroliferous industry and the development of bioremediation strategies. Likewise, search to lead to the best agreement of the performance of native microbiota in biogeochemical cycles in Potiguar Petroliferous Basin ecosystem
Resumo:
An organisms movement within and between habitats is an essential trait of life history, one that shapes population dynamics, communities and ecosystems in space and time. Since the ability to perceive and react to specific conditions varies greatly between organisms, different movement patterns are generated. These, in turn, will reflect the way species persist in the original habitat and surrounding patches. This study evaluated patterns of movement of frugivorous butterflies in order to estimate the connectivity of a landscape mosaic in an area of Atlantic Forest. For this purpose, we used the capture-mark-recapture method on butterflies trapped with fermented fruit bait in three distinct habitats. The first represents a typical Atlantic forest fragment, while the other two represent man-made matrix habitats. One contains a coconut plantation and the other a plantation of the exotic Acacia mangium species. Five traps were randomly placed in each landscape unit in areas of 40 x 40m. Using recapture data and relating it to distance between captures and habitat structure, I found that movement frequencies, both within and between landscape units were different for the analyzed species, suggesting that they do not interpret and react to the landscape in the same way. Thus this study was able to measure landscape functional connectivity. For most species, the exchange between forest and coconut plantations occurred with low frequency compared to exchanges between the forest and acacia plantations, which share more structural similarities. This seems to indicate that a matrix that is more similar to patches of native vegetation can shelter species, permit their movement and, consequently, contribute to the landscape connectivity
Resumo:
The decomposition process exercises an extensive control over the carbon cycle, affecting its availability and nutrient cycling in terrestrial ecosystems. The understanding of leaf decomposition patterns above the soil and fine roots decomposition below the soil is necessary and essential to identify and quantify more accurately the flow of energy and matter in forest systems. There is still a lack of studies and a large gap in the knowledge about what environmental variables act as local determinants over decomposition drivers. The knowledge about the decomposition process is still immature for Brazilian semiarid region. The aim of this study was to analyze the decomposition process (on leaves and fine roots) of a mixture of three native species for 12 months in a semiarid ecosystem in Northeast Brazil. We also examined whether the rate of decomposition can be explained by local environmental factors, specifically plant species richness, plant density and biomass, soil macro-arthropods species richness and abundance, amount of litterfall and fine root stock. Thirty sampling points were randomly distributed within an area of 2000 m x 500 m. To determine the decomposition rate, the litterbag technique was used and the data analysis were made with multiple regressions. There was a high degradation of dead organic matter along the experiment. Above ground plant biomass was the only environmental local factor significantly related to leaf decomposition. The density of vegetation and litter production were positively and negatively related to decay rates of fine roots, respectively. The results suggest that Caatinga spatial heterogeneity may exert strong influences over the decomposition process, taking into account the action of environmental factors related to organic matter exposure of and the consequent action of solar radiation as the decomposition process main controller in this region
Resumo:
About 40% of the earth is occupied by tropical and subtropical forests, including 42% of dry forests, where there is Caatinga Bioma, contemplating tree forests and shrubs, with xerophytic characteristics. Study and conservations of Caatinga biologic diversity is one of the greatest challenges of Brazilian science because those are, proportionally, the less studied among natural areas, with most of the scientific effort centered in very few points around the main cities in the area and also because it is the less protected natural Brazilian area. The environmental degradation is constantly increasing and has its rhythm accelerated by the men appropriation to meet or not their own needs. Therefore, species conservation should be based in three principles: the use of natural resources by present generation, waste prevention and use of the natural resources to benefit the majority of the citizens. Among the strategies to species conservation, we can mention the ex situ conservation , in which the conservation of genetic resources may be realized outside of the natural environment in which the species occur, and in situ conservation , or, in other words, in the places where the species occur. In ex situ conservation, the germplasm collections are maintained in the field and/or in laboratories (conservation chambers), and this mainly conserves intraspecific diversity (genetic variance), the ex situ collections are continuously enriched by collection activities, introduction and germplasm interchange; the in situ conservation preserving ecosystems and habitats, maintaining and recovering native population of species of interest. So, the objective of this paper is the search for strategies to the conservation of Mimosa caesalpiniifolia B. (sabiá) using instruments of environmental perception and plant biotechnology, as mechanisms of in situ and ex situ conservation. To environmental perception, were realized open, semi-structured and qualitative interviews. The questions included socioeconomic data and knowledge of Sabiá specie. To plant biotechnology, Sabiá seed collection were realized in different location to formation of a germplasm bank. The specie micropropagation was made from nodal segment of plants from the matrizeiro. About the knowledge of rural populations and the use of Sabiá plant, some preferences occurred from speeches that the plant possesses a firm wood, not attacked by termites, legalized for exploration by the Brazilian environmental organ (IBAMA), and is a native specie. This research found the rural population has knowledge about Sabiá specie and the natural resources are exhausting. The proposal that the rural community brought was the donation of the Sabiá specie seeding initiating on the rain season, in which the seeding would be plated between the lots, in individual plantations. To the formation of a matrix bank, plant biothecnology brought answers favorable to Sabiá specie seeding, with the formation of multiple shoots