3 resultados para NUCLEUS-ACCUMBENS CIRCUITRY

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subthalamic nucleus (STN) is a key area of the basal ganglia circuitry regulating movement. We identified a subpopulation of neurons within this structure that coexpresses Vglut2 and Pitx2, and by conditional targeting of this subpopulation we reduced Vglut2 expression levels in the STN by 40%, leaving Pitx2 expression intact. This reduction diminished, yet did not eliminate, glutamatergic transmission in the substantia nigra pars reticulata and entopeduncular nucleus, two major targets of the STN. The knock-out mice displayed hyperlocomotion and decreased latency in the initiation of movement while preserving normal gait and balance. Spatial cognition, social function, and level of impulsive choice also remained undisturbed. Furthermore, these mice showed reduced dopamine transporter binding and slower dopamine clearance in vivo, suggesting that Vglut2-expressing cells in the STN regulate dopaminergic transmission. Our results demonstrate that altering the contribution of a limited population within the STN is sufficient to achieve results similar to STN lesions and high-frequency stimulation, but with fewer side effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subthalamic nucleus (STN) is a key area of the basal ganglia circuitry regulating movement. We identified a subpopulation of neurons within this structure that coexpresses Vglut2 and Pitx2, and by conditional targeting of this subpopulation we reduced Vglut2 expression levels in the STN by 40%, leaving Pitx2 expression intact. This reduction diminished, yet did not eliminate, glutamatergic transmission in the substantia nigra pars reticulata and entopeduncular nucleus, two major targets of the STN. The knock-out mice displayed hyperlocomotion and decreased latency in the initiation of movement while preserving normal gait and balance. Spatial cognition, social function, and level of impulsive choice also remained undisturbed. Furthermore, these mice showed reduced dopamine transporter binding and slower dopamine clearance in vivo, suggesting that Vglut2-expressing cells in the STN regulate dopaminergic transmission. Our results demonstrate that altering the contribution of a limited population within the STN is sufficient to achieve results similar to STN lesions and high-frequency stimulation, but with fewer side effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3-Hidroxytyramine/dopamine (DA) is a monoamine of catecholamine family and isthe precursor substance synthesis of noradrenaline and adrenaline, having the enzymeTyrosine Hydroxylase (TH) as this regulatory process. In addition, the DA has theability to act as a neurotransmitter in the Central Nervous System - SNC, being themain neurotransmitter of brain nuclei, namely of A8 to A16. The nuclei of the midbrainthat express DA are the Retrorubral Field (RRF, A8), the Substantia Nigra parsCompacta (SNc, A9) and the Ventral Tegmental Area (VTA, A10). Such nuclei areinvolved in complex three circuitry that are the mesostriatal, mesolimbic andmesocotical and are directly related with several behavioral manifestations as motricitycontrol, reward signaling in behavioral learning, motivation and pathologicalconditions, such as Parkinson's Disease and schizophrenia. Interestingly, many of themorphological bases of these neural disturbance remain unknown. Considering therelevance of mesencephalic dopaminergic nuclei, the aim of this research is tocharacterize morphologically the dopaminergic nuclei (clusters A8, A9 and A10) of themidbrain of the bat (Artibeus planirostris). The Artibeus planirostris is a common bat inRio Grande do Norte. Ten animals were used in this research. The animals wereanesthetized, perfused, and the brain was removed from the skull. After dehydration insucrose, the brain was underwent microtomy. Saggital and coronal sections wereobtained and collected in six separate series. The series were Nissl-stained to identifythe cytoarchitectonic boundaries and the other series were subjected toimmunohistochemistry for TH. After cytoarchitectonic analysis and TH+ cellsidentification was possible to establish the anatomical boundaries of the nuclei, as wellas the subdivisions of three of the midbrain dopaminergic nuclei. The SNc is the mostrostral nucleus observed in the midbrain and is identified throughout the rostrocaudalextension of the midbrain. The VTA neurons were seen immediately caudal to the SNcappearance. The RRF neurons were observed just in the caudal levels of the midbrain.The SNc in Artibeus planirostris shows a particular feature, the tail of the SNc. The tailhave been described just in two other studied species. The present work shows aparticular variation in the organizational morphology of the SNc in the artibeus andcontribute to understand the phylogenetic routes by which the dopaminergic system hasevolved.