4 resultados para NITROGEN-PHOSPHORUS DETECTION
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The aims of this study were: i) assessing the trophic state of the Mendubim reservoir (semi-arid, Rio Grande do Norte, Brazil; 05° 38 99,0 S 36°55 98,0 W) based on chlorophyll-a, total phosphorus and nitrogen concentrations and water transparency; ii) relating the patterns of temporal variation of zooplankton and phytoplankton to the trophic state of the reservoir and iii) investigating the carrying capacity of the reservoir for cage fish farming. The samplingwas done monthly from July 2006 to July 2007 in three stations at the reservoir: next to the dam (barrage), in the central region and in the mouth of the main tributary. The abiotic and biotic variables analyzed were: Secchi depth, volatiles and fixed suspended solids, chlorophyll-a, total phosphorus and nitrogen, TN:TP ratio and mesozooplankton and phytoplankton composition and biomass. The results showed that the reservoir can be considered as mesotrophic with mean concentrations of total nitrogen, phosphorus and chlorophyll-a equal to 1711, 1 μg.L-1, 30,8 μg.L-1 and 5,62 μg.L-1 respectively. The Cyanophyceae class was the most representative in terms of density, with the presence of potentially toxic species such as Microcystis aeruginosa, Planktothrix planctonica, Cylindrospermopsis raciborskii, Aphanizomenon sp. ,Aphanocapsa delicatissima and Pseudanabaena acicularis. Among the zooplankton, the genus Notodiaptomus presented the largest biomass values. Overall, our results show that the light limitation should explain the weak relationship between chlorophyll-a and total phosphorus and nitrogen concentrations. We concluded that the water of Mendubim reservoir is suitable for intensive fish cage aquaculture. Based on the carrying capacity calculations for this reservoir, we found that the maximum sustainable yield of tilapias in cages in the reservoir is 126 ton per year assuming a factor of food conversion of 1.5: 1.0 and a phosphorus content in the fish food of 1%
Resumo:
The phytoplankton growth is dependent of several abiotic (nutrients, temperature) and biotic (predation by zooplankton) variables. In this work, a mathematical model was developed in Stella software to understand the planktonic dynamics of Extremoz Lagoon (RN) and to simulate scenarios of different environmental conditions. Data were collected monthly at two points of the lagoon. The state variables are phytoplankton and zooplankton and forcing variables are nitrogen, phosphorus and temperature. The results show that: a) the model are well coupled, especially when some constants assume different values; b) simulated nutrient concentrations reduction decreases phytoplankton biomass, but the increase of nutrients does not stimulate the growth; c) changes in the temperature does not change the phytoplankton biomass; d) changes in zooplankton biomass affect directly and reduces the phytoplankton, indicating a topdown control mechanism; e) changes in the nutrient concentration modified the biomass of zooplankton suggesting a rapid flow of energy between nutrients, phytoplankton and zooplankton and a ecosystem likely arranged in an inverted pyramid (higher concentration of zooplankton than phytoplankton)
Resumo:
The aims of this study were: i) assessing the trophic state of the Mendubim reservoir (semi-arid, Rio Grande do Norte, Brazil; 05° 38 99,0 S 36°55 98,0 W) based on chlorophyll-a, total phosphorus and nitrogen concentrations and water transparency; ii) relating the patterns of temporal variation of zooplankton and phytoplankton to the trophic state of the reservoir and iii) investigating the carrying capacity of the reservoir for cage fish farming. The samplingwas done monthly from July 2006 to July 2007 in three stations at the reservoir: next to the dam (barrage), in the central region and in the mouth of the main tributary. The abiotic and biotic variables analyzed were: Secchi depth, volatiles and fixed suspended solids, chlorophyll-a, total phosphorus and nitrogen, TN:TP ratio and mesozooplankton and phytoplankton composition and biomass. The results showed that the reservoir can be considered as mesotrophic with mean concentrations of total nitrogen, phosphorus and chlorophyll-a equal to 1711, 1 μg.L-1, 30,8 μg.L-1 and 5,62 μg.L-1 respectively. The Cyanophyceae class was the most representative in terms of density, with the presence of potentially toxic species such as Microcystis aeruginosa, Planktothrix planctonica, Cylindrospermopsis raciborskii, Aphanizomenon sp. ,Aphanocapsa delicatissima and Pseudanabaena acicularis. Among the zooplankton, the genus Notodiaptomus presented the largest biomass values. Overall, our results show that the light limitation should explain the weak relationship between chlorophyll-a and total phosphorus and nitrogen concentrations. We concluded that the water of Mendubim reservoir is suitable for intensive fish cage aquaculture. Based on the carrying capacity calculations for this reservoir, we found that the maximum sustainable yield of tilapias in cages in the reservoir is 126 ton per year assuming a factor of food conversion of 1.5: 1.0 and a phosphorus content in the fish food of 1%
Resumo:
This study aims to determine the amount of nutrients and toxic elements in aquatic macrophytes of species Eichhornia crassipes present in River Apodi/Mossoró - RN and check some of the possibilities of using the biomass produced, based on the influence of space - temporal and physiological absorption of nutrients by plants. For this, was determined: Leaf area, Leaf wet mass, Leaf dry mass, Real humidity, Apparent humidity, Ash, Total nitrogen, Crude protein, Calcium, Magnesium, Potassium, Total phosphorus, Sodium, Iron, Copper, Manganese, Zinc, Nickel, Cobalt, Aluminum, Cadmium, Lead and Total chromium at different times, 2 sampling points and 2 parts of plants (leaves and roots). The results show that the levels of nutrients, protein and toxic elements present in plant tissue of Eichhornia crassipes are influenced by spatial, temporal and physiological variability. In general, because the maximum values in the dry matter for total nitrogen (4.4088 g/100g), crude protein (27.5549 g/100g), total phosphorus (0.642 g/100 g), calcium (1.444 g/100g), magnesium (0.732 g/100 g), potassium (7.51 g/100 g), copper (4.4279 mg/100g), manganese (322.668 mg/100g), sodium (1.39 g/100g), iron (194.169 mg/100g) and zinc (3.5836 mg/100g), there was the possibility of using biomass of Eichhornia crassipes for various purposes such as in food animal, products production for human consumption, organic fertilizers, fabrication of brick low cost, and crafts. For all these applications requires a control of the levels of substances in plant tissue. Based on the levels of nutrients and crude protein, the younger plants (0 Month) would be best to have their biomass used. Moreover, one factor that contributes to the use of larger plants (6 Months), the levels of toxic elements which have significantly small or below the detection limit. Therefore, further studies quantifying the biomass produced/m2 at 0 and 6 months are needed for a more correct choice for the best time of harvest