3 resultados para NH(4)-N

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need to preserve the environment has led to the search for new materials for efficient disposal of chemical compounds that alter the stability of our natural resources. Among these resources, stands in first place the water, as a precious commodity and scarce, leading to the proper use and reuse. As a result, the World Health Organization has established maximum permissible values in drinking water, such as: 50 mg/L, 0, 1 mg/L and 0, 5 mg/L to at-3, at-2, NH 4, respectively. For these reasons, assesses the implementation of new materials and water treatment processes aiming at the removal of these compounds, such as alumina, in the form of powder or as a support for a catalytic system using inorganic membranes capable of supporting more severe conditions of temperature and pressure by opening new possibilities for applications of membrane reactors; and also for electrochemical treatments with doped diamond bobo electrodes (BDD) as anode and copper as cathode. For such purpose, was conducted the study of adsorption of nitrate in different times to assess the time required to achieve equilibrium by employing three commercial alumina called: acidic, basic and neutral alumina, with subsequent treatment only in the acidic alumina impregnating metals (PdCu/Al2O3) for the catalytic reaction. The materials were previously characterized by XRD, SEM techniques and ABET. Aluminas presented a considerable adsortive capacity of nitrate in the first thirty minutes, equivalent to 50% of removal reaching equilibrium in that time. After treatment, using alumina as catalyst for the reaction in batch reactor (Pd-Cu/Al2O3), the results were more favourable, totalling 64% reduction of ion NO3-at the end of three hours. On the other hand, the results for the catalytic reaction using the catalytic support Pd-Cu/TiO2 in membrane reactor proved to be low. -if, in this way, improve the conditions of catalytic system to optimize the process. Already, for the electrochemical tests using DDB1 electrodes as anode, and Cu, as cathode, there was a fairly significant nitrate reduction, approximately 80% of ion removal during three hours and cost viable applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent