2 resultados para NEGATIVE ACTIVATION-ENERGIES
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41
Resumo:
One of the main problems related to the use of diesel as fuel is the presence of sulfur (S) which causes environmental pollution and corrosion of engines. In order to minimize the consequences of the release of this pollutant, Brazilian law established maximum sulfur content that diesel fuel may have. To meet these requirements, diesel with a maximum sulfur concentration equal to 10 mg/kg (S10) has been widely marketed in the country. However, the reduction of sulfur can lead to changes in the physicochemical properties of the fuel, which are essential for the performance of road vehicles. This work aims to identify the main changes in the physicochemical properties of diesel fuel and how they are related to reduction of sulfur content. Samples of diesel types S10, S500 and S1800 were tested according with the methods of the American Society for Testing and Materials (ASTM). The fuels were also characterized by thermogravimetric analysis (TG) and subjected to physical distillation (ASTM D86) and simulated distillation gas chromatography (ASTM D2887). The results showed that the reduction of sulfur turned the fuel lighter and fluid, allowing a greater applicability to low temperature environments and safer for transportation and storage. Through the simulated distillation data was observed that decreasing sulfur content resulted in higher initial boiling point temperatures and the decreasing of the boiling temperature of the medium and heavy fractions. Thermogravimetric analysis showed a loss event mass attributed to volatilization or distillation of light and medium hydrocarbons. Based on these data, the kinetic behavior of the samples was investigated and it was observed that the activation energies (Ea) did not show significant changes throughout conversion. Considering the average of these energies, the S1800 had the highest Ea during the conversion and the S10 the lowest values