2 resultados para Multiple scales methods
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Background: Obesity impairment to the pulmonary function related to the magnitude of adiposity and is associated with excessive daytime sleepiness (EDS) and snoring, among others symptoms of respiratory disorders related to sleep. It is possible that obese individuals with excessive daytime sleepiness may make changes in lung function on spirometry monitored during the day as a consequence of fragmented sleep or episodes of nocturnal hypoventilation that cause respiratory and changes that can persist throughout the day. The combination of these findings alone sleepiness observed by subjective scales with pulmonary function in obese patients is unknown. Objective: To assess the influence of EDS and snoring on pulmonary function in morbidly obese and distinguish between different anthropometric markers, the snoring and sleepiness which the best predictors of spirometric function and respiratory muscle strength and endurance of these patients. Methods: We evaluated 40 morbidly obese markers on the anthropometric, spirometric respiratory variables, maximal inspiratory and expiratory pressures (MIP and MEP) and maximal voluntary ventilation (MVV) and the measured excessive daytime sleepiness (the Epworth sleepiness scale) and snoring (snoring scale of Stanford). The data were treated when the differences between the groups of obese patients with and without sleepiness, whereas the anthropometric variables, respiratory and snoring. Pearson's correlation was performed, and multiple regression analysis assessed the predictors of pulmonary function. For this we used the software SPSS 15.0 for windows and p <0.05. Results: 39 obese patients were included (28 women), age 36.92+11.97y, body mass index (BMI) 49.3+5.1kg/m², waist-hip ratio (WHR) 0.96+0.07 and neck circumference (NC) 44.1+4.2 cm. Spirometric values and respiratory pressures were up 80% of predicted values, except for endurance (MVV <80%). Obese with EDS have lower tidal volume. Positive correlation was observed between BMI and EDS, EDS and NC and between snoring and BMI, and negative correlation between EDS and tidal volume (TV), and between snoring and snoring FVC and FEV1. In linear regression the best predictor of pulmonary function was snoring, followed by NC. NC has more obese with higher strength (MEP, p = 0.031) and endurance (MVV p = 0.018) respiratory muscle. Conclusion: Obese with EDS tend to have lower TV. In addition, snoring and NC can better predict pulmonary function in obese when compared with other anthropometric markers or EDS. Obese patients with higher NC tend to have greater capacity for overall strength of respiratory muscles, but may have low muscle endurance
Resumo:
In the context of climate change over South America (SA) has been observed that the combination of high temperatures and rain more temperatures less rainfall, cause different impacts such as extreme precipitation events, favorable conditions for fires and droughts. As a result, these regions face growing threat of water shortage, local or generalized. Thus, the water availability in Brazil depends largely on the weather and its variations in different time scales. In this sense, the main objective of this research is to study the moisture budget through regional climate models (RCM) from Project Regional Climate Change Assessments for La Plata Basin (CLARIS-LPB) and combine these RCM through two statistical techniques in an attempt to improve prediction on three areas of AS: Amazon (AMZ), Northeast Brazil (NEB) and the Plata Basin (LPB) in past climates (1961-1990) and future (2071-2100). The moisture transport on AS was investigated through the moisture fluxes vertically integrated. The main results showed that the average fluxes of water vapor in the tropics (AMZ and NEB) are higher across the eastern and northern edges, thus indicating that the contributions of the trade winds of the North Atlantic and South are equally important for the entry moisture during the months of JJA and DJF. This configuration was observed in all the models and climates. In comparison climates, it was found that the convergence of the flow of moisture in the past weather was smaller in the future in various regions and seasons. Similarly, the majority of the SPC simulates the future climate, reduced precipitation in tropical regions (AMZ and NEB), and an increase in the LPB region. The second phase of this research was to carry out combination of RCM in more accurately predict precipitation, through the multiple regression techniques for components Main (C.RPC) and convex combination (C.EQM), and then analyze and compare combinations of RCM (ensemble). The results indicated that the combination was better in RPC represent precipitation observed in both climates. Since, in addition to showing values be close to those observed, the technique obtained coefficient of correlation of moderate to strong magnitude in almost every month in different climates and regions, also lower dispersion of data (RMSE). A significant advantage of the combination of methods was the ability to capture extreme events (outliers) for the study regions. In general, it was observed that the wet C.EQM captures more extreme, while C.RPC can capture more extreme dry climates and in the three regions studied.