11 resultados para Multiple input and multiple output autonomous flight systems
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text
Resumo:
The use of Multiple Input Multiple Output (MIMO) systems has permitted the recent evolution of wireless communication standards. The Spatial Multiplexing MIMO technique, in particular, provides a linear gain at the transmission capacity with the minimum between the numbers of transmit and receive antennas. To obtain a near capacity performance in SM-MIMO systems a soft decision Maximum A Posteriori Probability MIMO detector is necessary. However, such detector is too complex for practical solutions. Hence, the goal of a MIMO detector algorithm aimed for implementation is to get a good approximation of the ideal detector while keeping an acceptable complexity. Moreover, the algorithm needs to be mapped to a VLSI architecture with small area and high data rate. Since Spatial Multiplexing is a recent technique, it is argued that there is still much room for development of related algorithms and architectures. Therefore, this thesis focused on the study of sub optimum algorithms and VLSI architectures for broadband MIMO detector with soft decision. As a result, novel algorithms have been developed starting from proposals of optimizations for already established algorithms. Based on these results, new MIMO detector architectures with configurable modulation and competitive area, performance and data rate parameters are here proposed. The developed algorithms have been extensively simulated and the architectures were synthesized so that the results can serve as a reference for other works in the area
Resumo:
One of several techniques applied to production processes oil is the artificial lift, using equipment in order to reduce the bottom hole pressure, providing a pressure differential, resulting in a flow increase. The choice of the artificial lift method depends on a detailed analysis of the some factors, such as initial costs of installation, maintenance, and the existing conditions in the producing field. The Electrical Submersible Pumping method (ESP) appears to be quite efficient when the objective is to produce high liquid flow rates in both onshore and offshore environments, in adverse conditions of temperature and in the presence of viscous fluids. By definition, ESP is a method of artificial lift in which a subsurface electric motor transforms electrical into mechanical energy to trigger a centrifugal pump of multiple stages, composed of a rotating impeller (rotor) and a stationary diffuser (stator). The pump converts the mechanical energy of the engine into kinetic energy in the form of velocity, which pushes the fluid to the surface. The objective of this work is to implement the optimization method of the flexible polyhedron, known as Modified Simplex Method (MSM) applied to the study of the influence of the modification of the input and output parameters of the centrifugal pump impeller in the channel of a system ESP. In the use of the optimization method by changing the angular parameters of the pump, the resultant data applied to the simulations allowed to obtain optimized values of the Head (lift height), lossless efficiency and the power with differentiated results.
Resumo:
It bet on the next generation of computers as architecture with multiple processors and/or multicore processors. In this sense there are challenges related to features interconnection, operating frequency, the area on chip, power dissipation, performance and programmability. The mechanism of interconnection and communication it was considered ideal for this type of architecture are the networks-on-chip, due its scalability, reusability and intrinsic parallelism. The networks-on-chip communication is accomplished by transmitting packets that carry data and instructions that represent requests and responses between the processing elements interconnected by the network. The transmission of packets is accomplished as in a pipeline between the routers in the network, from source to destination of the communication, even allowing simultaneous communications between pairs of different sources and destinations. From this fact, it is proposed to transform the entire infrastructure communication of network-on-chip, using the routing mechanisms, arbitration and storage, in a parallel processing system for high performance. In this proposal, the packages are formed by instructions and data that represent the applications, which are executed on routers as well as they are transmitted, using the pipeline and parallel communication transmissions. In contrast, traditional processors are not used, but only single cores that control the access to memory. An implementation of this idea is called IPNoSys (Integrated Processing NoC System), which has an own programming model and a routing algorithm that guarantees the execution of all instructions in the packets, preventing situations of deadlock, livelock and starvation. This architecture provides mechanisms for input and output, interruption and operating system support. As proof of concept was developed a programming environment and a simulator for this architecture in SystemC, which allows configuration of various parameters and to obtain several results to evaluate it
Resumo:
Currently the uncertain system has attracted much academic community from the standpoint of scientific research and also practical applications. A series of mathematical approaches emerge in order to troubleshoot the uncertainties of real physical systems. In this context, the work presented here focuses on the application of control theory in a nonlinear dynamical system with parametric variations in order and robustness. We used as the practical application of this work, a system of tanks Quanser associates, in a configuration, whose mathematical model is represented by a second order system with input and output (SISO). The control system is performed by PID controllers, designed by various techniques, aiming to achieve robust performance and stability when subjected to parameter variations. Other controllers are designed with the intention of comparing the performance and robust stability of such systems. The results are obtained and compared from simulations in Matlab-simulink.
Resumo:
The increasing of the number of attacks in the computer networks has been treated with the increment of the resources that are applied directly in the active routers equip-ments of these networks. In this context, the firewalls had been consolidated as essential elements in the input and output control process of packets in a network. With the advent of intrusion detectors systems (IDS), efforts have been done in the direction to incorporate packets filtering based in standards of traditional firewalls. This integration incorporates the IDS functions (as filtering based on signatures, until then a passive element) with the already existing functions in firewall. In opposite of the efficiency due this incorporation in the blockage of signature known attacks, the filtering in the application level provokes a natural retard in the analyzed packets, and it can reduce the machine performance to filter the others packets because of machine resources demand by this level of filtering. This work presents models of treatment for this problem based in the packets re-routing for analysis by a sub-network with specific filterings. The suggestion of implementa- tion of this model aims reducing the performance problem and opening a space for the consolidation of scenes where others not conventional filtering solutions (spam blockage, P2P traffic control/blockage, etc.) can be inserted in the filtering sub-network, without inplying in overload of the main firewall in a corporative network
Resumo:
In this work a modification on ANFIS (Adaptive Network Based Fuzzy Inference System) structure is proposed to find a systematic method for nonlinear plants, with large operational range, identification and control, using linear local systems: models and controllers. This method is based on multiple model approach. This way, linear local models are obtained and then those models are combined by the proposed neurofuzzy structure. A metric that allows a satisfactory combination of those models is obtained after the structure training. It results on plant s global identification. A controller is projected for each local model. The global control is obtained by mixing local controllers signals. This is done by the modified ANFIS. The modification on ANFIS architecture allows the two neurofuzzy structures knowledge sharing. So the same metric obtained to combine models can be used to combine controllers. Two cases study are used to validate the new ANFIS structure. The knowledge sharing is evaluated in the second case study. It shows that just one modified ANFIS structure is necessary to combine linear models to identify, a nonlinear plant, and combine linear controllers to control this plant. The proposed method allows the usage of any identification and control techniques for local models and local controllers obtaining. It also reduces the complexity of ANFIS usage for identification and control. This work has prioritized simpler techniques for the identification and control systems to simplify the use of the method
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points. In oil recovery terminology, the given single point can be mapped to an injection well (injector) and the multiple other points to production wells (producers). In the previously standard case of one injection well and one production well separated by Euclidean distance r, the distribution of shortest paths l, P(l|r), shows a power-law behavior with exponent gl = 2.14 in 2D. Here we analyze the situation of one injector and an array A of producers. Symmetric arrays of producers lead to one peak in the distribution P(l|A), the probability that the shortest path between the injector and any of the producers is l, while the asymmetric configurations lead to several peaks in the distribution. We analyze configurations in which the injector is outside and inside the set of producers. The peak in P(l|A) for the symmetric arrays decays faster than for the standard case. For very long paths all the studied arrays exhibit a power-law behavior with exponent g ∼= gl.
Resumo:
Motion estimation is the main responsible for data reduction in digital video encoding. It is also the most computational damanding step. H.264 is the newest standard for video compression and was planned to double the compression ratio achievied by previous standards. It was developed by the ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts Group (MPEG) as the product of a partnership effort known as the Joint Video Team (JVT). H.264 presents novelties that improve the motion estimation efficiency, such as the adoption of variable block-size, quarter pixel precision and multiple reference frames. This work defines an architecture for motion estimation in hardware/software, using a full search algorithm, variable block-size and mode decision. This work consider the use of reconfigurable devices, soft-processors and development tools for embedded systems such as Quartus II, SOPC Builder, Nios II and ModelSim
Resumo:
This research aims at developing a variable structure adaptive backstepping controller (VS-ABC) by using state observers for SISO (Single Input Single Output), linear and time invariant systems with relative degree one. Therefore, the lters were replaced by a Luenberger Adaptive Observer and the control algorithm uses switching laws. The presented simulations compare the controller performance, considering when the state variables are estimated by an observer, with the case that the variables are available for measurement. Even with numerous performance advantages, adaptive backstepping controllers still have very complex algorithms, especially when the system state variables are not measured, since the use of lters on the plant input and output is not something trivial. As an attempt to make the controller design more intuitive, an adaptive observer as an alternative to commonly used K lters can be used. Furthermore, since the states variables are considered known, the controller has a reduction on the dependence of the unknown plant parameters on the design. Also, switching laws could be used in the controller instead of the traditional integral adaptive laws because they improve the system transient performance and increase the robustness against external disturbances in the plant input