4 resultados para Motion capture, Cammino, mMrkerless, Segmentazione
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Introduction: The sport practiced by people with disabilities has been growing in recent years. Consequently, advances in assessment and training methods have emerged. However, the paralympic sport keeps in tow these advances, with few specific studies that consider disability as intervening factor. The transcranial direct current stimulation (tDCS) is a technique that has proven to be capable of modulating brain function. Studies show beneficial effects of tDCS on muscle strength, power and fatigue during exercise. Objective: Investigate de the effect of tDCS on movement control in para-powerlifters. Methods: Eight subjects underwent two sessions of motion capture, which previously applied the anodic tDCS or sham sessions in the cerebellum. Three movements were performed with increasing load between 90-95% of 1MR. The movements were recorded by an 10 infrared cameras system which reconstructed the 3D trajectory of markers placed on the bar. Results: There have been changes between the anodic and sham conditions over bar level (initial, final, maximum during the eccentric and concentric phase) and in the difference between the final and initial bar level. Moreover, there was difference in bar level (final and during the eccentric phase) comparing athletes amputees and les autres. Conclusion: The findings of this study suggest that tDCS applied prior to the exercise over the cerebellum in para-powerlifters acts differently according to disability
Resumo:
Introduction: The intrinsic gait disorders in individuals with Parkinson's disease (PD) are one of the most disabling motor symptoms. Among the therapeutic approaches used in attempts to improve the motor function, especially the gait pattern of individuals, stands out the treadmill gait training associated with the addition of load. However, there are few findings that elucidate the benefits arising from such practice. Objective: To assess the effects of adding load on the treadmill gait training in individuals with PD. Material and Methods: A controlled, randomized and blinded clinical trial, was performed with a sample of 27 individuals (18 men and 9 women) with PD, randomly assigned to three experimental conditions, namely: treadmill gait training (n=9), treadmill gait training associated with addition of 5% load (n=9) and treadmill gait training associated with addition of 10% load (n=9). All volunteers were assessed, during phase on of Parkinson's medication, regarding to demographic, clinical and anthropometric (identification form) data, level of disability (Hoehn and Yahr Modified Scale), cognitive function (Mini Mental State Examination), clinical functional - in those areas activity of daily living and motor examination (Unified Parkinson's Disease Rating Scale - UPDRS) and gait cinematic analysis was performed through Qualisys Motion Capture System®. The intervention protocol consisted of gait training in a period of 4 consecutive weeks, with three weekly sessions, lasting 30 minutes each. The post-intervention assessment occurred the next day after the last training session, which was performed cinematic analysis of gait and the UPDRS. Data analysis was performed using the software Statistical Package for Social Sciences® (SPSS) 17.0. Results: The age of volunteers ranged from 41 to 75 years old (62,26 ± 9,07) and the time of clinical diagnosis of PD between 2 to 9 years (4,56 ± 2,42). There was a reduction regarding the score from motor exam domain (p=0,005), only when training with the addition of a 5% load. As for the space-time variables there was no significant difference between groups (p>0,120); however, the training with addition of 5% load presented the following changes: increase in stride length (p=0,028), in step length (p=0,006), in time balance of the most affected member (p=0,006) and reduction in support time of the referred member (p=0,007). Regarding angular variables significant differences between groups submitted to treadmill gait training without addition load and with 5% of load were observed in angle of the ankle at initial contact (p=0,019), in plantar flexion at toe-off (p=0,003) and in the maximum dorsiflexion in swing (p=0,005). While within groups, there was a reduction in amplitude of motion of the ankle (p=0,048), the only workout on the treadmill. Conclusion: The treadmill gait training with addition of 5% load proved to be a better experimental condition than the others because it provided greater gains in a number of variables (space-time and angular gait) and in the motion function, becoming a therapy capable of effectively improving the progress of individuals with PD
Resumo:
Background: The gait automaticity loss difficults realization of concurrent activities - Dual Task (DT). In these situations, individuals with Parkinson`s disease (PD) show a significant reduction in gait velocity and stride length, as strides variability and asymmetry increased, factors predisposing to falls. However, recent studies have shown that training involving DT may cause subsequent improvements in gait variables with DT in individuals with PD. The treadmill use was adopted by this study, by promoting greater regularity in step and enhance training. Objective:To investigate immediate effects of gait training associated with cognitive tasks on gait in individuals with PD. Methods: Twenty-two volunteers were randomly divided into two groups: control group (n = 11), who performed gait training on a treadmill for 20 minutes, and the experimental group (n = 11), who performed treadmill gait training for 20 minutes associated with cognitive tasks of verbal fluency, memory, and spatial planning. Participants were evaluated in phase on of antiparkinsonian medication as the demographic, clinical and anthropometric (identification form), cognitive status (Montreal Cognitive Assessment - MoCA), executive function (Frontal Assessment Battery), level of physical disability (Hoehn and Yahr Modified), motor and functional status (Unified Rating Scale for Parkinson`s Disease - UPDRS), and kinematics (Qualisys Motion Capture System). Results: There were not differences between groups, but both showed improvement after the intervention. The control group had an increase in velocity (p = 0.008), stride length (p = 0.04), step length (p = 0.02) and decreased double support time(p = 0.03). The experimental group showed an increase in speed (p = 0.002), stride length (p = 0.008), step length (p = 0.02) and cadence (p = 0.01), as well as a decrease in the width stride (p = 0.001) and total support time (p = 0.02). As the angular variables, the experimental group had a significant increase in the initial contact angle of ankle (p = 0.01). Conclusion: The gait training combined with cognitive activities didn`t provide significant improvements in gait variables with DT, but this study was the first to demonstrate that gait training on treadmill as simple task minimized the negative interference of DT in PD
Resumo:
The motion capture is a main tool for quantitative motion analyses. Since the XIX century, several motion caption systems have been developed for biomechanics study, animations, games and movies. The biomechanics and kinesiology involves and depends on knowledge from distinct fields, the engineering and health sciences. A precise human motion analysis requires knowledge from both fields. It is necessary then the use of didactics tools and methods for research and teaching for learning aid. The devices for analysis and motion capture currently that are found on the market and on educational institutes presents difficulties for didactical practice, which are the difficulty of transportation, high cost and limited freedom for the user towards the data acquisition. Therefore, the motion analysis is qualitatively performed or is quantitatively performed in highly complex laboratories. Based is these problems, this work presents the development of a motion capture system for didactic use hence a cheap, light, portable and easily used device with a free software. This design includes the selection of the device, the software development for that and tests. The developed system uses the device Kinect, from Microsoft, for its low cost, low weight, portability and easy use, and delivery tree-dimensional data with only one peripheral device. The proposed programs use the hardware to make motion captures, store them, reproduce them, process the motion data and graphically presents the data.