2 resultados para Morphological complexity
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
It is estimated that the Brazilian karst areas sum about 200.000 km2. The caves, one of the main components of karst, are important windows into the biological studies on hypogean environments. In Rio Grande do Norte are known 563 caves, and 476 of them are in the municipalities of Baraúna, Felipe Guerra, Governador Dix-Sept Rosado, Apodi and Mossoró, the Western region of the State. However, like in the rest of the country, the cave fauna of the State is still poorly understood. This study used data from invertebrates harvested in 47 caves and aimed to analyze the effect of environmental change between the dry and rainy seasons in the communities of cave invertebrates, characterize these communities and evaluate the relationships between morphological and biotic variables of the caves and surroundings, and to define priority areas for conservation of cave environments of the study area from biotic parameters. Strong effects were found in the community structure of cave invertebrates due environmental changes between seasons, with values of total richness, abundance, diversity and ecological complexity significantly higher in the rainy season. It was possible to assess how the morphology of the cave and the external environment variables affect the biotic system, so that the variety of resources, forest cover in the vicinity, the area of the cave and its entrance were the variables that best explained the structure communities of cave invertebrates in the region. High values of total richness of invertebrates (36,62 ± 14,04 spp / cave) and troglomorphic species (61 species, mean 1,77 ± 2,34 spp / cave) were found and, given the biological relevance in the context of the area national and the imminent anthropogenic pressures existing, we defined four priority areas for actions aiming cave biodiversity conservation in the region.
Resumo:
Digital Elevation Models (DEM) are numerical representations of a portion of the earth surface. Among several factors which affect the quality of a DEM, it should be emphasized the attention on the input data and the choice of the interpolating algorithm. On the other hand, several numerical models are used nowadays to characterize nearshore hydrodynamics and morphological changes in coastal areas, whose validation is based on field data collection. Independent on the complexity of the physical processes which are modeled, little attention has been given to the intrinsic bathymetric interpolation built within the numerical models of the specific application. Therefore, this study aims to investigate and to quantify the influence of the bathymetry, as obtained by a DEM, on the hydrodynamic circulation model at a coastal stretch, off the coast of the State of Rio Grande do Norte, Northeast Brazil. This coastal region is characterized by strong hydrodynamic and littoral processes, resulting in a very dynamic morphology with shallow coastal bathymetry. Important economic activities, such as oil exploitation and production, fisheries, salt ponds, shrimp farms and tourism, also bring impacts upon the local ecosystems and influence themselves the local hydrodynamics. This fact makes the region one of the most important for the development of the State, but also enhances the possibility of serious environmental accidents. As a hydrodynamic model, SisBaHiA® - Environmental Hydrodynamics System ( Sistema Básico de Hidrodinâmica Ambiental ) was chosen, for it has been successfully employed at several locations along the Brazilian coast. This model was developed at the Coastal and Oceanographical Engineering Group of the Ocean Engineering Program at the Federal University of Rio de Janeiro. Several interpolating methods were tested for the construction of the DEM, namely Natural Neighbor, Kriging, Triangulation with Linear Interpolation, Inverse Distance to a Power, Nearest Neighbor, and Minimum Curvature, all implemented within the software Surfer®. The bathymetry which was used as reference for the DEM was obtained from nautical charts provided by the Brazilian Hydrographic Service of the Brazilian Navy and from a field survey conducted in 2005. Changes in flow velocity and free surface elevation were evaluated under three aspects: a spatial vision along three profiles perpendicular to the coast and one profile longitudinal to the coast as shown; a temporal vision from three central nodes of the grid during 30 days; a hodograph analysis of components of speed in U and V, by different tidal cycles. Small, but negligible, variations in sea surface elevation were identified. However, the differences in flow and direction of velocities were significant, depending on the DEM