3 resultados para Molecular gas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The nanostructured molecular sieve SBA-15 was synthesized by the hydrothermal method, and modified with lanthanum with Si/La molar ratios of 25, 50, 75 and 100. The materials were evaluated as catalysts for the cracking of n-hexane model reaction. Type SBA- 15 and LaSBA-15 mesoporous materials were synthesized using tetraetilortosilicato as a source of silica, hydrochloric acid, heptahydrate lanthanum chloride and distilled water. Pluronic P123 triblock. polymer was used as structure template. The syntheses were carried out by 72 hours. The obtained SBA-15 samples were previously analyzed by thermogravimetry, in order to check the conditions of calcination for removal of organic template. Then, the calcined materials were characterized by X-ray diffraction, infrared spectroscopy, adsorption and desorption of nitrogen, scanning electron microscopy and X-ray microanalysis by dispersive energy. The acidity of the samples was determined using adsorption of n-bulinamina and desorption followed by thermogravimetry. It was found that the hydrothermal synthesis method was suitable for the synthesis of the SBA-15 mesoporous materials, with an excellent degree of hexagonal ordering. The reactions of catalytic cracking of n-hexane were carried out using a fixed bed continuous flow microreactor, coupled on-line to a gas chromatograph. From the catalytic evaluation, it was observed that the mesoporous materials containing lanthanum showed different results for the reaction of cracking of nhexane compared to the unmodified mesoporous material SBA-15. As a result of cracking was obtained as main products hydrocarbons in the range of C1 to C5. The catalyst that showed better properties in relation to the acidity and catalytic activity was LaSBA-15 with the ratio Si/La = 50
Resumo:
Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.
Resumo:
Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.