2 resultados para Molecular Methods

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Candidiasis is a major oral manifestation in kidney transplant patients. Candida spp. possess essential virulence factors which contribute for the infectious process, including the ability to adhere to epithelial cells and biofilm formation. The extract obtained from the leaves of Eugenia uniflora [acetone: water (7:3, v/v)] has demonstrated antifungal activity against Candida spp. This study evaluated the influence of the extract of E. uniflora in adhesion to human buccal epithelial cells (HBEC) and biofilm formation of 42 strains of Candida spp. isolated from the oral cavity of kidney transplant patients. Candida spp. strains belonging to a culture collection were reactivated and phenotypically re-identified by classical and molecular methods (genotyping ABC and RAPD), when necessary, to complete the identification to the species level. For the virulence tests evaluated in vitro, yeasts were grown in the presence and absence of 1000 g/mL of the extract. A ratio of 10: 1 (Candida spp. cells x HBECs) was incubated for 1 hour at 37 ° C, 200 rpm, fixed with 10% formalin and the number of Candida cells adhered to 150 HBEC determined by optical microscope. Biofilms were formed on polystyrene microplates in the presence or absence of the extract. The quantification was performed with crystal violet staining at 570 nm. All isolates were viable and exhibited phenotypic characteristics suggestive of each species identified. Two strains presumptively identified as Candida dubliniensis belonged to this species as determined with genotyping ABC, while strains identified as belonging to the Candida parapsilosis species complex were differentiated by RAPD genotyping. Candida albicans was found to be the most adherent species to the buccal epithelia, while C. tropicalis showed remarkable biofilm formation.We could detect that the extract of E. uniflora was able to reduce adhesion to HBEC for both Candida albicans and non-Candida albicans Candida species. On the other hand, only 16 Candida spp. strains (36 %) showed reduced biofilm formation. However, two highly biofilm producer strains of C. tropicalis had an expressive reduction in biofilm formation. This study reinforces the idea that besides growth inhibition, E. uniflora may interfere with the expression of some virulence factors of Candida spp., and may be possibly applied in the future as a novel antifungal agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant metabolism consists of a complex network of physical and chemical events resulting in photosynthesis, respiration, synthesis and degradation of organic compounds. This is only possible due to the different kinds of responses to many environmental variations that a plant could be subject through evolution, leading also to conquering new surroundings. The glyoxylate cycle is a metabolic pathway found in glyoxysomes plant, which has unique role in the seedling establishment. Considered as a variation of the citric acid cycle, it uses an acetyl coenzyme A molecule, derived from lipids beta-oxidation to synthesize compounds which are used in carbohydrate synthesis. The Malate synthase (MLS) and Isocitrate lyase (ICL) enzyme of this cycle are unique and essential in regulating the biosynthesis of carbohydrates. Because of the absence of decarboxylation steps as rate-limiting steps, detailed studies of molecular phylogeny and evolution of these proteins enables the elucidation of the effects of this route presence in the evolutionary processes involved in their distribution across the genome from different plant species. Therefore, the aim of this study was to establish a relationship between the molecular evolution of the characteristics of enzymes from the glyoxylate cycle (isocitrate lyase and malate synthase) and their molecular phylogeny, among green plants (Viridiplantae). For this, amino acid and nucleotide sequences were used, from online repositories as UniProt and Genbank. Sequences were aligned and then subjected to an analysis of the best-fit substitution models. The phylogeny was rebuilt by distance methods (neighbor-joining) and discrete methods (maximum likelihood, maximum parsimony and Bayesian analysis). The identification of structural patterns in the evolution of the enzymes was made through homology modeling and structure prediction from protein sequences. Based on comparative analyzes of in silico models and from the results of phylogenetic inferences, both enzymes show significant structure conservation and their topologies in agreement with two processes of selection and specialization of the genes. Thus, confirming the relevance of new studies to elucidate the plant metabolism from an evolutionary perspective