10 resultados para Modified low density lipoprotein
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Obesity is increasing, reaching epidemic levels in many regions of the world. Studies have shown that consumption of peanuts influences on weight control and this influence may be due to the action of trypsin inhibitors sacietogênica that condition increased plasma colescistocinina (CCK). Moreover, the peanut has other health benefits, and these assignments are guaranteed to increase their production and consumption of several of its products, including the paçoca peanut. The aim of this study was to identify the presence of a trypsin inhibitor in paçoca peanut and evaluate its effect on food intake, weight gain and histomorphological changes in swiss mice (n = 8) and Wistar rats (n = 6). Experimental diets were prepared based on the AIN-93G and supplemented with tack or peanut trypsin inhibitor partially purified paçoca peanut (AHTI). After each treatment, the animals were anesthetized and euthanized, their bloods were collected by cardiac puncture for the determination of CCK and other biochemical parameters (glucose, triglycerides, total cholesterol, high density lipoprotein, low density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase and albumin) and their pancreas removed for histologic and morphometric analysis. The supplementation with paçoca peanut and the AHTI showed a decrease of body weight gain and food intake in both mice and rats, due to the satiety, since the animals showed no evidence of impairment of nutritional status conditioned by consumption the AHTI. There were also observed biochemical or morphological important when compared with controls. However, AHTI led to increased secretion of CCK, a peptide sacietogênico. Thus, these results indicate that AHTI present in paçoca peanut, is able to enhance the secretion of plasma CCK and thereby reduce the weight gain associated with lower food intake of experimenta animals
Resumo:
The seeds are excellent sources of proteinase inhibitors and have been highlighted owing to various applications. Among these applications are those in effect on food intake and weight gain that stand out because of the increasing number of obese individuals. This study evaluated the effects of trypsin inhibitor present in the seed of tamarind (Tamarindus indica L.) reduction in weight gain, biochemical and morphological alterations in Wistar rats. For this, we partially purified a trypsin inhibitor tamarind seed. This inhibitor, ITT2 at a concentration of 25 mg / kg body weight, over a period of 14 days was able to reduce food intake in rats (n = 6) by approximately 47%, causing a reduction in weight gain approximately 70% when compared with the control group. With the evaluation of the in vivo digestibility was demonstrated that the animals lost weight due to satiety, presented by the reduction of food intake, since there were significant differences between true digestibility for the control group (90.7%) and the group treated with inhibitor (89.88%). Additionally, we checked the deeds of ITT2 on biochemical parameters (glucose, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, gamma glutamyl transferase albumin, globulin, total protein and C-reactive protein) and these, when assessed in the study groups showed no statistically significant variations. We also evaluate the histology of some organs, liver, stomach, intestine, and pancreas, and showed no changes. And to evaluate the effect of trypsin inhibitor on food intake due to the satiety is regulated by cholecystokinin (CCK) were measured plasma levels, and it was observed that the levels of CCK in animals receiving ITT2 were significantly higher ( 20 + 1.22) than in animals receiving only solution with casein (10.14 + 2.9) or water (5.92 + 1.15). Thus, the results indicate that the effect caused ITT2 satiety, reducing food intake, which in turn caused a reduction in weight gain in animals without causing morphological and biochemical changes, this effect caused by the elevation of plasma levels CCK
Resumo:
Heart transplantation (HT) represents one of the greatest advances in medicine over the last decades. It is indicated for patients with severe heart disease unresponsive to clinical treatment and conventional surgery, poor short-term prognosis and a 1- year mortality rate over 40%. HT has improved survival worldwide (80% in the first year, 70% in five years and 60% in ten years). However, the procedure has been associated with weight change and increased risk of secondary conditions such as diabetes, hypertension, dyslipidemia and obesity due to immunosuppressive therapy following transplantation. The objective of this study was to determine the impact of weight change on the metabolic stability of HT patients. The study was retrospective with data collected from the records of 82 adult patients (83% male; average age 45.06±12.04 years) submitted to HT between October 1997 and December 2005 at a transplantation service in Ceará (Brazil). The selected outcome variables (biopathological profile, weight and body mass index―BMI) were related to biochemical and metabolic change. The results were expressed in terms of frequency, measures of central tendency, Student s t test and Pearson s correlation coefficients. The analysis showed that following HT the average global BMI increased from 23.77±3.68kg/m2 to 25.48±3.92kg/m2 in the first year and to 28.38±4.97kg/m2 in the fifth. Overweight/obese patients (BMI ≥ 25 kg/m2) had higher average levels of glucose, total cholesterol, low-density lipoprotein and triglycerides than patients with eutrophy/malnutrition (BMI < 25 kg/m2). In conclusion, overweight/obese patients were likely to present higher average levels of glucose, triglycerides, total cholesterol and fractions than patients with eutrophy/malnutrition, indicating a direct and significant relation between nutritional status and weight change in the metabolic profile of HT patients
Resumo:
The lipid profile is a group of lab tests that include triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). However, serum non-HDL-C, Apo A-I and Apo B levels, as well as the lipids ratios (TC/HDL-C, LDL-C/HDL-C and Apo B/Apo A-I), have been described as better predictors of cardiovascular diseases. Reference intervals are tools often used to help the evaluation of the people s health state. These days, Brazilian studies still use the reference intervals of lipids and lipoproteins from other countries, ignoring differences between the populations. Therefore, this study aimed to establish reference intervals for lipids, lipoproteins and apolipoproteins in adults of Rio Grande do Norte/Brazil. Healthy individuals (96 men and 283 women) between 18 and 59years old formed the reference sample group. The samples were collected after fasting 12 to 14 hours. Information on lifestyle and dietary habits of the participants were obtained through questionnaire. The serum glucose level and renal and liver activity were evaluated by laboratory testing. The results of lipid profile were analyzed according to sex, age and mesoregion of Rio Grande do Norte, with significance level of 5% (p < 0,05). The lower and upper reference limits were identified by the 2.5 percentile and 97.5 percentile, respectively, and assurance intervals of 90% was calculated for each of these limits. Among the determinants of lipid profile analyzed, only a few significant differences were observed according to sex, but in terms of age, the groups of smaller and older ages were most likely different. When evaluated by region, the means of West region shown the most significant variations. Not many studies were useful to compare the reference intervals determined in this study. Thus, it becomes necessary to carry out similar studies in other regions of Brazil and of the world given the clinical importance of reference intervals
Resumo:
Alpha-lipoic acid (ALA) is a potent antioxidant with favourable anti-inflammatory, metabolic and endothelial effects, and has been widely investigated due to its potential against cardiovascular risk factors. This study aimed to evaluate the effect of oral ALA supplementation on oxidative stress biomarkers, inflammation and cardiovascular risk factors in patients with hypertension. This is a double-blind placebo-controlled randomized clinical trial, where the intervention was evaluated prospectively comparing results in both groups. The sample consisted of 64 hypertensive patients who were randomly distributed into ALA group (n = 32), receiving 600 mg / day ALA for twelve weeks and control group (n = 32), receiving placebo for the same period. The following parameters were evaluated before and after intervention: lipid peroxidation, content of reduced glutathione (GSH), enzymatic activities of glutathione peroxidase (GPx) and superoxide dismustase, ultrasensitive C-reactive protein (hs-CRP), triglycerides, total cholesterol and fractions, fasting glucose and anthropometric indicators. There was a statistically significant reduction (p <0.05) in serum concentrations of total cholesterol, very low density lipoprotein (VLDL), high density lipoprotein (HDL), triglycerides and blood glucose. There was a reduction in body weight and waist, abdominal and hip circumferences in the group that received ALA. In addition, there was a statistically significant increase (p <0.05) in the contents of reduced glutathione (GSH) and glutathione peroxidase (GPx) in the group receiving ALA. Oral administration of ALA appears to be a valuable adjuvant therapy, which may contribute to decrease the damage caused by oxidative stress and other risk factors associated with the atherosclerotic process
Resumo:
Obesity is increasing, reaching epidemic levels in many regions of the world. Studies have shown that consumption of peanuts influences on weight control and this influence may be due to the action of trypsin inhibitors sacietogênica that condition increased plasma colescistocinina (CCK). Moreover, the peanut has other health benefits, and these assignments are guaranteed to increase their production and consumption of several of its products, including the paçoca peanut. The aim of this study was to identify the presence of a trypsin inhibitor in paçoca peanut and evaluate its effect on food intake, weight gain and histomorphological changes in swiss mice (n = 8) and Wistar rats (n = 6). Experimental diets were prepared based on the AIN-93G and supplemented with tack or peanut trypsin inhibitor partially purified paçoca peanut (AHTI). After each treatment, the animals were anesthetized and euthanized, their bloods were collected by cardiac puncture for the determination of CCK and other biochemical parameters (glucose, triglycerides, total cholesterol, high density lipoprotein, low density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase and albumin) and their pancreas removed for histologic and morphometric analysis. The supplementation with paçoca peanut and the AHTI showed a decrease of body weight gain and food intake in both mice and rats, due to the satiety, since the animals showed no evidence of impairment of nutritional status conditioned by consumption the AHTI. There were also observed biochemical or morphological important when compared with controls. However, AHTI led to increased secretion of CCK, a peptide sacietogênico. Thus, these results indicate that AHTI present in paçoca peanut, is able to enhance the secretion of plasma CCK and thereby reduce the weight gain associated with lower food intake of experimenta animals
Resumo:
The seeds are excellent sources of proteinase inhibitors and have been highlighted owing to various applications. Among these applications are those in effect on food intake and weight gain that stand out because of the increasing number of obese individuals. This study evaluated the effects of trypsin inhibitor present in the seed of tamarind (Tamarindus indica L.) reduction in weight gain, biochemical and morphological alterations in Wistar rats. For this, we partially purified a trypsin inhibitor tamarind seed. This inhibitor, ITT2 at a concentration of 25 mg / kg body weight, over a period of 14 days was able to reduce food intake in rats (n = 6) by approximately 47%, causing a reduction in weight gain approximately 70% when compared with the control group. With the evaluation of the in vivo digestibility was demonstrated that the animals lost weight due to satiety, presented by the reduction of food intake, since there were significant differences between true digestibility for the control group (90.7%) and the group treated with inhibitor (89.88%). Additionally, we checked the deeds of ITT2 on biochemical parameters (glucose, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, gamma glutamyl transferase albumin, globulin, total protein and C-reactive protein) and these, when assessed in the study groups showed no statistically significant variations. We also evaluate the histology of some organs, liver, stomach, intestine, and pancreas, and showed no changes. And to evaluate the effect of trypsin inhibitor on food intake due to the satiety is regulated by cholecystokinin (CCK) were measured plasma levels, and it was observed that the levels of CCK in animals receiving ITT2 were significantly higher ( 20 + 1.22) than in animals receiving only solution with casein (10.14 + 2.9) or water (5.92 + 1.15). Thus, the results indicate that the effect caused ITT2 satiety, reducing food intake, which in turn caused a reduction in weight gain in animals without causing morphological and biochemical changes, this effect caused by the elevation of plasma levels CCK
Resumo:
The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole
Resumo:
Catalytic processes are widely present in everyday life. This results in large number of studies seeking materials that may combine the low cost catalytic efficiency. Based on this assumption, the clays have long been used as catalysts, with its huge availability, diversity and possibility of improving their properties from structural changes, primarily responsible for this great use. Among the natural clays, vermiculite due to their characteristic properties (high cation exchange capacity and expansion), is suitable for various applications including as catalysts and catalyst supports. In this work, the acid leaching of clay vermiculite was performed, coming from Santa Luzia-PB, with nitric acid (2, 3 and 4 mol / L) and subsequent calcination of the materials obtained. The materials were named as Vx/400, where x is the acid concentration employed and 400 used in calcination temperature. The effectiveness of changes made was determined by XRD techniques, FT-IR, EDS, TG/DTG, nitrogen physisorption and DTP of n-butylamine. Acid leaching has improved some properties of the clay - specific area and acidity - but the control of the acid concentration used is of vital importance, since the highest concentration caused the partial destruction of vermiculite entailing a decline in their properties. For analysis of the catalytic activity of the modified clay was made a comparative study with the SBA -15 mesoporous materials, synthesized via hydrothermal method, using the pyrolysis of low density polyethylene (LDPE). The results showed that the acid plays a fundamental role in the conversion of the polymer into smaller molecules, the material V3/400 was more selective for the source monomer (ethylene) due to their increased acidity, which promotes more breaks bonds in the polymeric chain, while materials and V0/400 V2/400, lower acidity, showed higher selectivity to light hydrocarbons, the range of fuel (41.96 and 41.23%, respectively), due to less breakage and secondary condensation reactions chains; already V4/400 SBA-15/550 and resulted in lower percentages of light hydrocarbons and the partial destruction of the structure and low acidity, respectively, responsible for the inefficiency of materials
Resumo:
The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole