7 resultados para Mo-V-Te-Nb oxide catalysts
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Microalloyed steels constitute a specific class of steel with low amount of carbon and microalloying elements such as Vanadium (V), Niobium (Nb) and Titanium (Ti). The development and application of microalloyed steels and steels in general are limited to the handling of powders with particles of submicron or nanometer dimensions. Therefore, this work presents an alternative in order to construction of microalloyed steels utilizing the deposition by magnetron sputtering technique as a microalloying element addiction in which Ti nanoparticles are dispersed in an iron matrix. The advantage of that technique in relation to the conventional metallurgical processes is the possibility of uniformly disperse the microalloying elements in the iron matrix. It was carried out deposition of Ti onto Fe powder in high CH4, H2, Ar plasma atmosphere, with two deposition times. After the deposition, the iron powder with nanoparticles of Ti dispersed distributed, were compacted and sintered at 1120 ° C in resistive furnace. Characterization techniques utilized in the samples of powder before and after deposition of Ti were Granulometry, Scanning Electron Microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (DRX). In the case of sintered samples, it was carried out characterization by SEM and Vickers Microhardness assays. The results show which the deposition technique by magnetron sputtering is practicable in the dispersion of particles in iron matrix. The EDX microanalysis detected higher percentages of Ti when the deposition were carried out with the inert gas and when the deposition process was carried out with reactive gas. The presence of titanium in iron matrix was also evidenced by the results of X-ray diffraction peaks that showed shifts in the network matrix. Given these results it can be said that the technique of magnetron sputtering deposition is feasible in the dispersion of nanoparticles of iron matrix in Ti.
Resumo:
The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Microalloyed steels constitute a specific class of steel with low amount of carbon and microalloying elements such as Vanadium (V), Niobium (Nb) and Titanium (Ti). The development and application of microalloyed steels and steels in general are limited to the handling of powders with particles of submicron or nanometer dimensions. Therefore, this work presents an alternative in order to construction of microalloyed steels utilizing the deposition by magnetron sputtering technique as a microalloying element addiction in which Ti nanoparticles are dispersed in an iron matrix. The advantage of that technique in relation to the conventional metallurgical processes is the possibility of uniformly disperse the microalloying elements in the iron matrix. It was carried out deposition of Ti onto Fe powder in high CH4, H2, Ar plasma atmosphere, with two deposition times. After the deposition, the iron powder with nanoparticles of Ti dispersed distributed, were compacted and sintered at 1120 ° C in resistive furnace. Characterization techniques utilized in the samples of powder before and after deposition of Ti were Granulometry, Scanning Electron Microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (DRX). In the case of sintered samples, it was carried out characterization by SEM and Vickers Microhardness assays. The results show which the deposition technique by magnetron sputtering is practicable in the dispersion of particles in iron matrix. The EDX microanalysis detected higher percentages of Ti when the deposition were carried out with the inert gas and when the deposition process was carried out with reactive gas. The presence of titanium in iron matrix was also evidenced by the results of X-ray diffraction peaks that showed shifts in the network matrix. Given these results it can be said that the technique of magnetron sputtering deposition is feasible in the dispersion of nanoparticles of iron matrix in Ti.
Resumo:
The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure
Resumo:
O objetivo deste estudo foi comparar a fusibilidade de ligas de Co-Cr-Mo-W (Remanium 2000), Ni-Cr (Durabond) e Co-Cr-Mo (Vera-PDI), incluídas em revestimentos à base de fosfato, sílica ou utilizando uma técnica mista. Uma rede de nylon quadrada (10 X 10 mm) com 100 espaços abertos serviu de modelo para construção de padrões de cera, que foram incluídos com revestimento à base de sílica, revestimento fosfatado e técnica mista (camada de revestimento fosfatado com 2 mm de espessura + revestimento à base de sílica). Quarenta e cinco espécimes (5 para cada condição experimental) foram fundidos sob chama de gás-oxigênio e a seguir jateados com óxido de alumínio. O número de segmentos fundidos completos foi contado para obter uma percentagem designada como "valor de fusibilidade", representando a precisão da liga em reproduzir os detalhes do molde. A análise estatística por meio de ANOVA a dois critérios e teste Tukey mostrou que, comparando-se as ligas, a Remanium 2000 teve fusibilidade estaticamente semelhante (p>0,05) à da Vera PDI e inferior à da liga Durabond (p<0,05). Considerando os resultados da técnica mista, a liga Remanium 2000 teve menor valor de fusibilidade (p<0,05) que as ligas Durabond e Vera PDI, que apresentaram valores estatisticamente semelhantes entre si (p>0,05). Concluindo, a fusibilidade da liga de Co-Cr-Mo-W (Remanium 2000) foi comparável à da liga de Co-Cr (Vera PDI) e inferior à da liga de Ni-Cr alloy (Durabond). À exceção da liga Remanium 2000, a técnica de inclusão mista aumentou consideravelmente a capacidade das ligas testadas de reproduzir os detalhes do molde, quando comparada à técnica de inclusão em revestimento fosfatado. A técnica de inclusão mista representa uma alternativa para melhorar a fusibilidade de ligas de metais básicos sem afetar a qualidade superficial das peças metálicas.
Resumo:
O objetivo deste estudo foi comparar a fusibilidade de ligas de Co-Cr-Mo-W (Remanium 2000), Ni-Cr (Durabond) e Co-Cr-Mo (Vera-PDI), incluídas em revestimentos à base de fosfato, sílica ou utilizando uma técnica mista. Uma rede de nylon quadrada (10 X 10 mm) com 100 espaços abertos serviu de modelo para construção de padrões de cera, que foram incluídos com revestimento à base de sílica, revestimento fosfatado e técnica mista (camada de revestimento fosfatado com 2 mm de espessura + revestimento à base de sílica). Quarenta e cinco espécimes (5 para cada condição experimental) foram fundidos sob chama de gás-oxigênio e a seguir jateados com óxido de alumínio. O número de segmentos fundidos completos foi contado para obter uma percentagem designada como "valor de fusibilidade", representando a precisão da liga em reproduzir os detalhes do molde. A análise estatística por meio de ANOVA a dois critérios e teste Tukey mostrou que, comparando-se as ligas, a Remanium 2000 teve fusibilidade estaticamente semelhante (p>0,05) à da Vera PDI e inferior à da liga Durabond (p<0,05). Considerando os resultados da técnica mista, a liga Remanium 2000 teve menor valor de fusibilidade (p<0,05) que as ligas Durabond e Vera PDI, que apresentaram valores estatisticamente semelhantes entre si (p>0,05). Concluindo, a fusibilidade da liga de Co-Cr-Mo-W (Remanium 2000) foi comparável à da liga de Co-Cr (Vera PDI) e inferior à da liga de Ni-Cr alloy (Durabond). À exceção da liga Remanium 2000, a técnica de inclusão mista aumentou consideravelmente a capacidade das ligas testadas de reproduzir os detalhes do molde, quando comparada à técnica de inclusão em revestimento fosfatado. A técnica de inclusão mista representa uma alternativa para melhorar a fusibilidade de ligas de metais básicos sem afetar a qualidade superficial das peças metálicas.