1 resultado para Missing data
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (17)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston University Digital Common (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (19)
- CentAUR: Central Archive University of Reading - UK (20)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (14)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (11)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (9)
- Indian Institute of Science - Bangalore - Índia (11)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (18)
- Queensland University of Technology - ePrints Archive (557)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- Scielo España (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (6)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Michigan (1)
- University of Queensland eSpace - Australia (18)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In this work we study the survival cure rate model proposed by Yakovlev (1993) that are considered in a competing risk setting. Covariates are introduced for modeling the cure rate and we allow some covariates to have missing values. We consider only the cases by which the missing covariates are categorical and implement the EM algorithm via the method of weights for maximum likelihood estimation. We present a Monte Carlo simulation experiment to compare the properties of the estimators based on this method with those estimators under the complete case scenario. We also evaluate, in this experiment, the impact in the parameter estimates when we increase the proportion of immune and censored individuals among the not immune one. We demonstrate the proposed methodology with a real data set involving the time until the graduation for the undergraduate course of Statistics of the Universidade Federal do Rio Grande do Norte