11 resultados para Mineralização

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Availability of good quality water has been reduced vertiginously, over the last decade, in the world. In some regions, the water resources have high concentration of the dissolved salts, these characteristics of the water make it s use impossible. Water quality can be a limitation for irrigated agriculture, principally in regions of arid or semiarid climate where the water resources are generally saline and are exposed at high evaporation ratio. For that reason, precipitation of the salts occurs near the soil surface and those salts themselves cumulate in the vegetal tissue, reducing the soil fertility and crop production. The adoption of tolerant crop to the water salinity and soil salinity, adaptable to the climatic conditions is other emergent necessity. This work had the goal of studying the effects of four salinity levels of the irrigation water salinity and use of mulch, dried leaves of Forest mangrove (Acacia mangiumWilld), in cultivated soil with amaranth (Amaranthus cruentus, BRS Alegria variety), in greenhouse. It was utilized the transplant of plants to PVC columns, containing 30 kg of silty loam soil, 10 days after emerging, with space of 50 x 50 cm between lines. Treatments were composed by combination of four levels of salinity (0.147; 1.500; 3.000 e 4.500 dS m-1), obtained by addition NaCl (commercial) to irrigation water and soil with and without protection, by mulch. A factorial system 4 x 2 was used with four repetitions, totalizing 32 parcels. The concentrations of nutrients in soil solution have been evaluated, in the dry matter of the vegetal tissue (roots, stem, leaves and raceme residue), at the end of the vegetative cycle. The use of soil protection reduced time for the beginning inflorescence of plants, at the same time, the increase of the salinity delayed this phase of amaranth development. The use of the mulch effectively increased the height, stem diameter, area of the larger leaf, humidity and dry matter content and amaranth grain production. The vegetal species showed salinity tolerance to experimented levels. The adopted treatments did not affect the pH values, exchangeable cation contents, electrical conductivity of soil solution (EC1:5) and saturated extract (ECSE), and Ca+2, Mg+, Fe+2 and Mn+2 contents, in the soil solution. The increase of the salinity concentration in the irrigation water inhibited the mineralization process of the organic matter (OM) and, consequently, the efficiency in the it´s utilization by plants, at the same time, produced increase in the values of the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR) and potassium adsorption ratio (PAR), in the soil solution. Therefore, the use of the mulch did not affect the first three parameters. The protein and nutrient contents: K+, Ca+2, P, Mg+2 e Cu+2, in amaranth grains, were improved by tillage condition. The raceme residues showed chemical/nutritional composition that makes advantageous its application in animal ration. In this context, it follows that amaranth tolerate the saline stress, of the irrigation water, until 4.500 dS m-1, temperature and relative humidity of the air predominant in the experimental environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Great part of the gold mineralizations are associated with shearing zones through which circulate a great volume of fluids, that interact with the host rocks, originating leaching or precipitation of chemical elements, including gold. The studied mineralizations are inserted in the Seridó Belt. The tungsten mineralization in Brejuí Mine is hosted in calcsilicate rocks from Jucurutu Formation. The São Francisco auriferous mineralization has as host rocks mica-schists from Seridó Formation, while the Ponta da Serra and Fazenda Simpático mineralizations are hosted in orthogneisses of this fold belt basement. The research conducted on these mineralizations had the purpose of integrate the data of chemical elements behavior during the shearing/mineralizing event, and its influence on the isotopic systems Rb-Sr and Sm-Nd. The studies of chemical mobility in the auriferous mineralizations showed that elements that during the shearing displayed in general an immobile behavior were Al, Ti and Zr. Among the elements that were mobilized during the event, K and Rb showed mass gain in ali belts of transformed rocks, while the elements Ca, Na and Sr normally lost mass. Petrographic studies showed that the minerais biotite and plagioclase, in all investigated mineralizations, played an important role in the chemical reactions occurred in the transformed rocks to the generation of muscovite, cordierite and sillimanite, justifying the input of K to the formation of muscovite, and the release of Na and Ca from plagioclase to the fluid phase. In the São Francisco auriferous mineralization, the results of the Rb-Sr isotopic analysis yielded ages of 645 ± 19 Ma and 596 ± 17 Ma, with both samples, from original and transformed rocks. Two ages, 569 ± 20 Ma. and 554 ± 19 Ma., were obtained with samples frem the transformed rocks domain. These ages suggest that there were two metamorphic pulses during the emplacement of the mineralized shearing zone. The Sm-Nd data yielded TDM ages of 1,31 Ga and 1,26 Ga with 3Nd (0,6 Ga) of -0,26 e -0,40 for the original and final transformed rocks, respectively. In case of the orthogneisses of Caicó Complex, e.g. the Ponta da Serra and Fazenda Simpático mineralizations, the Rb-Sr data did not yield ages with geological significance. In the Ponta da Serra mineralization, the Sm-Nd isotopic data yielded T DM ages of 2,56 Ga and 2,63 Ga to the original rocks and of 2,71 Ga to the mineralized sheared rock, and values of 3Nd (2,0 Ga) between -3,70 e -5,42 to the original and sheared rock, respectively. In the Fazenda Simpático, Sm-Nd data yielded TDM between 2,65 and 2,69 Ga with values of 3Nd (2,0 Ga) between -5,25 e -5,52. Considering the Sm-Nd data, the TDM ages may be admitted as the age of the parental magma extraction, producer of the protoliths of the orthogneisses from Ponta da Serra and Fazenda Simpático mineralizations. The chemical mobility studies showed that in the basement hosted mineralizations, Rb achieved mass while Sr lost mass, as Sm as well as Nd were strongly mobilized. The Sm/Nd ratio remained constant, however, confirming the isochemical character of those elements. In the basement mineralizations, Rb-Sr ages are destituted of geological significance, because of the partial opening of the isotopic system during the tectono-metamorphic transformations. In the tungsten mineralization, the diagram Sm-Nd constructed with the whole-rock data of calcsilicatic and the high-temperature paragenesis (garnet, diopside and iron-pargasitic hornblende) indicated an 631 ± 24 Ma age, while with the whole-rock data and low-temperature paragenesis (vesuvianite, epidote and calcite), a 537 ± 107 Ma age was obtained. These ages, associated with the petrographic observations, suggest that there was a time gap among the hydrothernal events responsible by the formation of the high and low temperature paragenesis in the calcsilicatic rocks mineralized in scheelite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modern industrial progress has been contaminating water with phenolic compounds. These are toxic and carcinogenic substances and it is essential to reduce its concentration in water to a tolerable one, determined by CONAMA, in order to protect the living organisms. In this context, this work focuses on the treatment and characterization of catalysts derived from the bio-coal, by-product of biomass pyrolysis (avelós and wood dust) as well as its evaluation in the phenol photocatalytic degradation reaction. Assays were carried out in a slurry bed reactor, which enables instantaneous measurements of temperature, pH and dissolved oxygen. The experiments were performed in the following operating conditions: temperature of 50 °C, oxygen flow equals to 410 mL min-1 , volume of reagent solution equals to 3.2 L, 400 W UV lamp, at 1 atm pressure, with a 2 hours run. The parameters evaluated were the pH (3.0, 6.9 and 10.7), initial concentration of commercial phenol (250, 500 and 1000 ppm), catalyst concentration (0, 1, 2, and 3 g L-1 ), nature of the catalyst (activated avelós carbon washed with dichloromethane, CAADCM, and CMADCM, activated dust wood carbon washed with dichloromethane). The results of XRF, XRD and BET confirmed the presence of iron and potassium in satisfactory amounts to the CAADCM catalyst and on a reduced amount to CMADCM catalyst, and also the surface area increase of the materials after a chemical and physical activation. The phenol degradation curves indicate that pH has a significant effect on the phenol conversion, showing better results for lowers pH. The optimum concentration of catalyst is observed equals to 1 g L-1 , and the increase of the initial phenol concentration exerts a negative influence in the reaction execution. It was also observed positive effect of the presence of iron and potassium in the catalyst structure: betters conversions were observed for tests conducted with the catalyst CAADCM compared to CMADCM catalyst under the same conditions. The higher conversion was achieved for the test carried out at acid pH (3.0) with an initial concentration of phenol at 250 ppm catalyst in the presence of CAADCM at 1 g L-1 . The liquid samples taken every 15 minutes were analyzed by liquid chromatography identifying and quantifying hydroquinone, p-benzoquinone, catechol and maleic acid. Finally, a reaction mechanism is proposed, cogitating the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. Applying the model of Langmuir-Hinshelwood along with a mass balance it was obtained a system of differential equations that were solved using the Runge-Kutta 4th order method associated with a optimization routine called SWARM (particle swarm) aiming to minimize the least square objective function for obtaining the kinetic and adsorption parameters. Related to the kinetic rate constant, it was obtained a magnitude of 10-3 for the phenol degradation, 10-4 to 10-2 for forming the acids, 10-6 to 10-9 for the mineralization of quinones (hydroquinone, p-benzoquinone and catechol), 10-3 to 10-2 for the mineralization of acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of wastewater is essential to human health. One of the most important steps is the disinfection treatment which uses chlorine to eliminate bacteria as required by environmental agencies. However, the identification of potentially toxic byproducts generated by this method, such as trihalomethanes, has stimulated the development of new alternative disinfection technologies. Among them, heterogeneous photocatalysis, TiO2 photocatalysis and electrochemical disinfection are considered suitable alternatives to the chlorination method. Thus, the present dissertation analyzes the evolution of active chlorine species in a synthetic NaCl solution and it is tested to treat a synthetic solution of the dye Reactive Blue 19 using boron-doped diamond (BDD) and ruthenium oxide (Ti/Ru0.3Ti0.7O2) as anodes. The indirect electrochemical process was discussed in terms of mineralization of the total organic load and percentage of color removal in order to evaluate the applicability of electrochemical technology. Electrochemical experiments were carried out with different current densities (25, 50 and 75 mA.cm-2) during 120 minutes. On the other hand, other important parameter in this study was the influence of the proportion sp3/sp2 on BDD anode on the performance of the evolution of active chlorine species which was investigated by electrolytic techniques (linear polarization), with the intention of determining the related training oxidizing species and consumption energy to chemical or electrochemical reactions. From the results, it can be noted that the BDD electrode showed better efficiency throughout the electrochemical process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of wastewater is essential to human health. One of the most important steps is the disinfection treatment which uses chlorine to eliminate bacteria as required by environmental agencies. However, the identification of potentially toxic byproducts generated by this method, such as trihalomethanes, has stimulated the development of new alternative disinfection technologies. Among them, heterogeneous photocatalysis, TiO2 photocatalysis and electrochemical disinfection are considered suitable alternatives to the chlorination method. Thus, the present dissertation analyzes the evolution of active chlorine species in a synthetic NaCl solution and it is tested to treat a synthetic solution of the dye Reactive Blue 19 using boron-doped diamond (BDD) and ruthenium oxide (Ti/Ru0.3Ti0.7O2) as anodes. The indirect electrochemical process was discussed in terms of mineralization of the total organic load and percentage of color removal in order to evaluate the applicability of electrochemical technology. Electrochemical experiments were carried out with different current densities (25, 50 and 75 mA.cm-2) during 120 minutes. On the other hand, other important parameter in this study was the influence of the proportion sp3/sp2 on BDD anode on the performance of the evolution of active chlorine species which was investigated by electrolytic techniques (linear polarization), with the intention of determining the related training oxidizing species and consumption energy to chemical or electrochemical reactions. From the results, it can be noted that the BDD electrode showed better efficiency throughout the electrochemical process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).