42 resultados para Microorganisms.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The microorganisms play very important roles in maintaining ecosystems, which explains the enormous interest in understanding the relationship between these organisms as well as between them and the environment. It is estimated that the total number of prokaryotic cells on Earth is between 4 and 6 x 1030, constituting an enormous biological and genetic pool to be explored. Although currently only 1% of all this wealth can be cultivated by standard laboratory techniques, metagenomic tools allow access to the genomic potential of environmental samples in a independent culture manner, and in combination with third generation sequencing technologies, the samples coverage become even greater. Soils, in particular, are the major reservoirs of this diversity, and many important environments around us, as the Brazilian biomes Caatinga and Atlantic Forest, are poorly studied. Thus, the genetic material from environmental soil samples of Caatinga and Atlantic Forest biomes were extracted by direct techniques, pyrosequenced, and the sequences generated were analyzed by bioinformatics programs (MEGAN MG-RAST and WEBCarma). Taxonomic comparative profiles of the samples showed that the phyla Proteobacteria, Actinobacteria, Acidobacteria and Planctomycetes were the most representative. In addition, fungi of the phylum Ascomycota were identified predominantly in the soil sample from the Atlantic Forest. Metabolic profiles showed that despite the existence of environmental differences, sequences from both samples were similarly placed in the various functional subsystems, indicating no specific habitat functions. This work, a pioneer in taxonomic and metabolic comparative analysis of soil samples from Brazilian biomes, contributes to the knowledge of these complex environmental systems, so far little explored
Resumo:
The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications
Resumo:
Leishmania infantum and Trypanosoma cruzi are trypanosomatids of medical importance and are, respectively, the etiologic agents of visceral leishmaniasis (VL) and Chagas disease (CD) in Brazil. People infected with L. infantum or T. cruzi may develop asymptomatically, enabling the transmission of pathogens through blood transfusion and / or organs. The assessment of the infection by T. cruzi is included among the tests performed for screening blood donors in Brazil, however, there is no availability of tests for Leishmania. Serological tests for T. cruzi are very sensitive, but not specific, and may have cross-reactions with other microorganisms. Thus, the aim of this study was to determine the prevalence of Leishmania infection in blood donors and assess whether the serological test for T. cruzi detect L. infantum. Among the 300 blood samples from donors, discarded in 2011, 61 were T. cruzi positive, 203 were from donors with other infections and 36 were from handbags with low blood volume, but without infection. We also assessed 144 samples from donors without infections and able to donate blood, totaling 444 subjects. DNA was extracted from blood samples of all to perform quantitative PCR (qPCR) to detect Leishmania DNA. The buffy coat obtained from all samples was grown in Schneider medium supplemented and NNN. All samples were evaluated for the presence of anti-Leishmania antibody. The serological results indicate a percentage of 22% of Leishmania infection in blood samples obtained from discarded bags. A total of 60% of samples positive in ELISA for T. cruzi were negative by IFI, used as confirmatory test, ie 60% false positive for Chagas. Among these samples false positive for Chagas, 72% were positive by ELISA for Leishmania characterizing the occurrence of cross reaction between serologic assays. Of the 300 cultures performed, 18 grew parasites that were typed by qPCR and specific isoenzymes, found the species Leishmania infantum crops. Among the 18 cultures, 4 were purged from scholarships for low volume and all negative serology blood bank, thus demonstrating that there is a real risk of Leishmania transmission via transfusion. It is concluded that in an area endemic for leishmaniasis in Brazil, serological diagnosis performed to detect infection by T. cruzi among blood donors can identify infection by L. infantum and although cause false positive for Chagas, this cross-reactivity reduces the risk of Leishmania infection via blood transfusion, since tests are not applied specific detection of the parasite. In this way, there remains the need to discuss the implementation of a specific serological screening test for Leishmania in endemic countries such as Brazil
Resumo:
Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)
Resumo:
he present model of agriculture is based on intensive use of industrial inputs, due to its rapid response, but it brings harmful consequences to the environment, and it is necessary the use of modern inputs. And an alternative is the use of rock biofertilizers in agriculture, a product easy to use, with higher residual effect and does not harm the environment. The objective of study was to evaluate the inoculation and co-inoculation of different microorganisms in the solubilization of rock phosphate and potash ground microbial evaluating the best performance in the production of biofertilizers comparing with rocks pure in soil chemical properties and, verify effect of inoculation of the bacterium Paenibacillus polymyxa in the absorption of minerals dissolved in the development of cowpea (Vigna unguiculata [L.] Walp.). The first bioassay was conducted in Laboratory (UFRN) for 72 days in Petri dishes, where the rock powder was increased by 10% and sulfur co-inoculated and inoculated with bacterial suspension of Paenibacillus polymyxa grown in medium tryptone soy broth, Ralstonia solanacearum in medium Kelman, Cromobacterium violaceum in medium Luria-Bertani and Acidithiobacillus thiooxidans in medium Tuovinen and Kelly,and fungi Trichoderma humatum and Penicillium fellutanum in malt extract. Every 12 days, samples were removed in order to build up the release curve of minerals. The second bioassay was conducted in a greenhouse of the Agricultural Research Corporation of Rio Grande do Norte in experimental delineation in randomized block designs, was used 10 kg of an Yellow Argissolo Dystrophic per pot with the addition of treatments super phosphate simple (SS), potassium chloride (KCl), pure rock, biofertilizers in doses 40, 70, 100 and 200% of the recommendation for SS and KCl, and a control, or not inoculated with bacteria P. polymyxa. Were used seeds of cowpea BRS Potiguar and co-inoculated with the bacterial suspension of Bradyrhizobium japonicum and P. polymyxa. The first crop was harvested 45 days after planting, were evaluated in the dry matter (ADM), macronutrients (N, P, K, Ca, Mg) and micronutrients (Zn, Fe, Mn) in ADM. And the second at 75 days assessing levels of macro end micronutrients in plants and soil, and the maximum adsorption capacity of P in soil. The results showed synergism in co-inoculations with P. polymyxa+R. solanacearum and, P. polymyxa+C. violaceum solubilizations providing higher P and K, respectively, and better solubilization time at 36 days. The pH was lower in biofertilizers higher doses, but there was better with their addition to P at the highest dose. Significant reduction of maximum adsorption capacity of phosphorus with increasing dose of biofertilizer. For K and Ca was better with SS+KCl, and Mg to pure rock. There was an effect of fertilization on the absorption, with better results for P, K and ADM with SS+KCL, and N, Ca and Mg for biofertilizers. Generally, the P. polymyxa not influence the absorption of the elements in the plant. In treatments with the uninoculated P. polymyxa chemical fertilizer had an average significantly higher for weight and number of grains. And in the presence of the bacteria, biofertilizers and chemical fertilizers had positive values in relation to rock and control. The data show that the rocks and biofertilizers could meet the need of nutrients the plants revealed as potential for sustainable agriculture
Resumo:
The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river
Resumo:
Brazil has vast amounts of hydric resources, whose quality has been deteriorating due to pollutant dumping. Household waste disposal is one of the main sources of water pollution, stimulating bacteria proliferation and introducing microorganisms, including those from fecal matter. Conventional water disinfection methods are a solution, but on the downside, they lead to the formation byproducts hazardous to human health. In this study, aiming to develop bactericidal filters for the disinfection of drinking water; silver nanoparticles were deposited on alumina foams through three routes: sputtering DC, dip coating and in situ chemical reduction of silver nitrate. The depositions were characterized through X-ray diffraction, scanning electron microscopy and EDS element mapping. The influence of the depositions on permeability and mechanical properties of the ceramic foams was assessed and, in sequence, a preliminary antibacterial efficiency analysis was carried out. Characterization results indicate that the chemical reduction routes were efficient in depositing homogeneously distributed silver particles and that the concentration of the metallic precursor salt affects size and morphology of the particles. The antibacterial efficiency analysis indicates that the chemical reduction filters have potential for water disinfection
Resumo:
The biofilms microbial forms of association are responsible for generating, accelerating and / or induce the process of corrosion. The damage generated in the petroleum industry for this type of corrosion is significatives, representing major investment for your control. The aim of this study was to evaluate such tests antibiograms the effects of extracts of Jatropha curcas and essential oil of Lippia gracilis Schauer on microrganisms isolated from water samples and, thereafter, select the most effective natural product for further evaluation of biofilms formed in dynamic system. Extracts of J. curcas were not efficient on the complete inhibition of microbial growth in tests type antibiogram, and essential oil of L. gracilis Schauer most effective and determined for the other tests. A standard concentration of essential oil of 20 μL was chosen and established for the evaluation of the biofilms and the rate of corrosion. The biocide effect was determined by microbial counts of five types of microorganisms: aerobic bacteria, precipitating iron, total anaerobic, sulphate reducers (BRS) and fungi. The rate of corrosion was measured by loss of mass. Molecular identification and scanning electron microscopy (SEM) were performed. The data showed reduction to zero of the most probable number (MPN) of bacteria precipitating iron and BRS from 115 and 113 minutes of contact, respectively. There was also inhibited in fungi, reducing to zero the rate of colony-forming units (CFU) from 74 minutes of exposure. However, for aerobic and anaerobic bacteria there was no significant difference in the time of exposure to the essential oil, remaining constant. The rate of corrosion was also influenced by the presence of oil. The essential oil of L. gracilis was shown to be potentially effective
Resumo:
The oil activity in the Rio Grande do Norte State (RN) is a permanent threat to coastal ecosystems, particularly mangroves, with the possibility of oil spills. In this context, the objective of this study was to evaluate the potential resistance of the mangrove environment of a possible spill. Were selected and isolated microorganisms degrading oil by the technique of enrichment cultures and formation of a bacterial consortium. The kinetic study of the consortium was held in rotary incubator shaken at 150 rpm and 30° C. Samples were taken at intervals of 4 hours for analysis of cell concentration and surface tension. The biodegradation was monitored using two methods of respirometry: manometric (OxiTop-C ®) and conductivimetry, where the biodegradation of oil was estimated indirectly by oxygen consumption and CO2 production, respectively. Furthermore, it was used a full 2² factorial design with triplicate at central point to the runs that used the conductivimetric methodology.. The technique of enrichment cultures allowed to obtain thirteen bacterial strains. Kinetic study of the consortium, we can showed the absence of the lag phase, reaching a maximum cell concentration of 2.55 g / L at 16 h of cultivation and a reduction on surface tension. When we adopted the methodology of OxiTop-C was detected a band indicating biodegradability (1% oil v/v), however when we used the conductivimetry methodology did not observe any band that would indicate effective biodegradation. By monitoring a process of biodegradation is necessary to observe the methodology will be adopted to evaluate the biodegradation process, since for the same conditions adopted different methodologies can produce different results. The oil-degrading isolates from soils of the mangrove estuary Potengi / RN are largely to be used in bioremediation strategies of these places, in the case of a possible oil spill, or it can be used in the treatment of waste oil generated in saline environments, since they are optimized the conditions of the tests so that the efficiency of biodegradation reach the minimum level suggested by the standarts
Resumo:
Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties
Resumo:
The human activities responsible for the ambient degradation in the modern world are diverse. The industrial activities are preponderant in the question of the impact consequences for brazilian ecosystems. Amongst the human activities, the petroliferous industry in operation in Potiguar Petroliferous Basin (PPB) displays the constant risk of ambient impacts in the integrant cities, not only for the human populations and the environment, but also it reaches the native microorganisms of Caatinga ground and in the mangrove sediment. Not hindering, the elaboration of strategies of bioremediation for impacted areas pass through the knowledge of microbiota and its relations with the environment. Moreover, in the microorganism groups associated to oil, are emphasized the sulfate-reducing prokaryotes (SRP) that, in its anaerobic metabolism, these organisms participate of the sulfate reduction, discharging H2S, causing ambient risks and causing the corrosion of surfaces, as pipelines and tanks, resulting in damages for the industry. Some ancestries of PRS integrate the Archaea domain, group of microorganisms whose sequenced genomes present predominance of extremophilic adaptations, including surrounding with oil presence. This work has two correlated objectives: i) the detection and monitoring of the gene dsrB, gift in sulfate-reducing prokaryotes, through DGGE analysis in samples of mDNA of a mangrove sediment and semiarid soil, both in the BPP; ii) to relate genomic characteristics to the ecological aspects of Archaea through in silico studies, standing out the importance to the oil and gas industry. The results of the first work suggest that the petrodegraders communities of SRP persist after the contamination with oil in mangrove sediment and in semiarid soil. Comparing the populations of both sites, it reveals that there are variations in the size and composition during one year of experiments. In the second work, functional and structural factors are the probable cause to the pressure in maintenance of the conservation of the sequences in the multiple copies of the 16S rDNA gene. Is verified also the discrepancy established between total content GC and content GC of the same gene. Such results relating ribosomal genes and the ambient factors are important for metagenomic evaluations using PCR-DGGE. The knowledge of microbiota associated to the oil can contribute for a better destination of resources by the petroliferous industry and the development of bioremediation strategies. Likewise, search to lead to the best agreement of the performance of native microbiota in biogeochemical cycles in Potiguar Petroliferous Basin ecosystem
Resumo:
In a hospital environment, these bacteria can be spread by insects such as ants, which are characterized by high adaptability to the urban environment. Staphylococcus is a leading cause of hospital infection. In Europe, Latin America, USA and Canada, the group of coagulase negative staphylococci (CoNS) is the second leading cause of these infections, according to SENTRY (antimicrobial surveillance program- EUA). In this study, we investigated the potential of ants (Hymenoptera: Formicidae) as vehicle mechanics of Staphylococcus bacteria in a public hospital, in Natal-RN. The ants were collected, day and night, from June 2007 to may 2008, in the following sectors: hospitals, laundry, kitchen, blood bank. The ants were identified according to the identification key of Bolton, 1997. For the analysis of staphylococci, the ants were incubated in broth Tryptic Soy Broth (TSB) for 24 hours at 35 º C and then incubated on Mannitol Salt Agar. The typical colonies of staphylococci incubated for 24 hours at 35 ° C in Tryptic Soy Agar for the characterization tests (Gram stain, catalase, susceptibility to bacitracin and free coagulase). The identification of CoNS was performed through biochemical tests: susceptibility to novobiocin, growth under anaerobic conditions, presence of urease, the ornithine decarboxylation and acid production from the sugars mannose, maltose, trehalose, mannitol and xylose. The antimicrobial susceptibility examined by disk-diffusion technique. The technique of Polymerase Chain Reaction was used to confirm the presence of mecA gene and the ability to produce biofilm was verified by testing in vitro using polystyrene inert surface, in samples of resistant staphylococci. Among 440 ants, 85 (19.1%) were carrying coagulase-negative staphylococci (CoNS) of the species Staphylococcus saprophyticus (17), Staphylococcus epidermidis (15), Staphylococcus xylosus (13), Staphylococcus hominis hominis (10), Staphylococcus lugdunensis (10), Staphylococcus warneri (6), Staphylococcus cohnii urealyticum (5), Staphylococcus haemolyticus (3), Staphylococcus simulans (3), Staphylococcus cohnii cohnii (2), and Staphylococcus capitis (1). No Staphylococcus aureus was found. Among the isolates, 30.58% showed resistance to erythromycin. Two samples of CoNS (2.35%), obtained from the ant Tapinoma melanocephalum collected in the post-surgical female ward, S. Hominis hominis and S. lugdunensis harbored the mecA gene and were resistant to multiple antibiotics, and the specie S. hominis hominis even showed to be a biofilm producer. This study proves that ants act as carriers of multidrug-resistant coagulase-negative Staphylococci and biofilm producers and points to the risk of the spreading of pathogenic microorganisms by this insect in the hospital environment
Resumo:
Industrial activities, oil spills and its derivatives, as well as the incomplete combustion of fossil fuels have caused a great accumulation of hydrocarbons in the environment. The number of microorganisms on the planet is estimated at 1030 and prokaryotes the most abundant. They colonized diverse environments for thousands of years, including those considered extreme and represent an untapped source of metabolic and genetic diversity with a large biotechnological potential. It is also known that certain microorganisms have the enzymatic capacity to degrade petroleum hydrocarbons and, in many ecosystems, there is an indigenous community capable of performing this function. The metagenomic has revolutionized the microbiology allowing access uncultured microbial communities, being a powerful tool for elucidation of their ecological functions and metabolic profiles, as well as for identification of new biomolecules. Thus, this study applied metagenomic approaches not only for functional selection of genes involved in biodegradation and emulsification processes of the petroleum-derived hydrocarbons, but also to describe the taxonomic and metabolic composition of two metagenomes from aquatic microbiome. We analyzed 123.116 (365 ± 118 bp) and 127.563 sequences (352 ± 120 bp) of marine and estuarine metagenomes, respectively. Eight clones were found, four involved in the petroleum biodegradation and four were able to emulsify kerosene indicating their abilities in biosurfactants synthesis. Therefore, the metagenomic analyses performed were efficient not only in the search of bioproducts of biotechnological interest and in the analysis of the functional and taxonomic profile of the metagenomes studied as well
Resumo:
The science of Dentistry wishes obtains the ideal solution for the dental plaque chemical control. This research evaluated antimicrobial action capacity in calcium hydroxide and tergentol various solutions starting for the CHD 20, a root canals irrigating solution with a reason of 80% calcium hydroxide saturated solution and 20% tergentol detergent with the aim of evaluate this drug mouth rinse indication with prevention or combat objective for dental caries and periodontal diseases. Antibiogram disks and biofilm tests were accomplished for the microorganisms: Streptococcus mutans, Streptococcus sanguis, Streptococcus sobrinus and Lactobacillus casei. Different reasons of detergent for the calcium hydroxide saturated solution, tergentol and distillated water solution, 0,12% clorhexydine digluconate solution was positive control and distillated water was negative control. The results showed better performance of clorhexydine in relation to calcium hydroxide directing to not accept this (CHD20) as mouth rinse solution
Resumo:
Schinus terebinthifolius Raddi is used in the treatment of skin and mucosal injuries, infections of respiratory, digestive and genitourinary systems. Currently one of the biggest problems faced for the industry of phytopharmaceuticals with regard to the quality of raw materials is the microbial contamination. The aim this study was to evaluate the antimicrobial action of the hidroalcoholic extract of aroeira, beyond testing the effectiveness of the preservative system in hidrogel to the base of this extract. The extracts were prepared by maceration in the ratio of 1:10 of solvent plant/with alcohol 40%. The methods for microbial count were pour plate and test for specific microorganisms, analyzing in third copy each one of the samples. The antimicrobial activity of aroeira extracts was performed using an agar diffusion method, using strains of S. aureus, P. aeruginosa, E. coli, B. subtilis, C. albicans, C. tropicalis, C. krusei, C. guilliermondii, T. rubrum, M. gypseum, A. flavus and A. niger. The formula with aroeira was evaluated by the challenge test. This method consisted of artificial contamination the sample with separate inóculos of A. niger, C. albicans, E. coli e S. aureus aeruginosa and determinations of survivors for the method of counting for pour plate , during times 0, 24h, 48h, 7 days, 14 days, 21 days and 28 days. How much to the results, one verified that the extract of aroeira in the 13,5 concentration mg/mL presented antimicrobial activity for cepas of E. coli, B. subtilis, P. aeruginosa e S. aureus, producing inhibition zone, on average with 13 mm of diameter. However it did not present no fungi activity. The formula with aroeira containig both methylparaben and propylparaben showed a good efficacy in challenge test front to strains of A. niger, C. albicans, E. coli, S. aureus. The A criteria of European Pharmacopoeia, adopted in this work, was verified that this product revealed the good preservative efficacy for the challenge test, time interval of the 28 days. However, it is interesting to extend this study, in order to carry through the sped up stability and the test of shelf, to establish the validity of this formularization