3 resultados para Microfiltration
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios
Resumo:
The use of membrane filters in the post-treatment of sewage has been increasingly employed to obtain water quality, applicable to various forms of reuse. Despite the advantages presented using the permeate membranes, such as saving water and reducing water pollution, the concentrate generated in the process ends up being an inconvenience to the deployment of this technology due to lack of sustainable solutions for their management. Thus, the main objective of this research was to evaluate the use of membranes for microfiltration, ultrafiltration, nanofiltration and reverse osmosis concentrated in agriculture, using it as liquid fertilizer. The permeated membranes were also assessed in order to identify activities in which they could be reused. Five configurations were established from four types of membranes, so that each configuration represents a different system. The tests were conducted in batch mode, with triplicate for each configuration. The results indicated that permeated the microfiltration and ultrafiltration can be used in urban areas, in non-potable uses. Have the nanofiltration permeate can be reused in the industry, replacement cooling towers, and other non -potable uses required in the manufacturing unit. The permeate obtained in reverse osmosis met the intended uses for nanofiltration as well as the standards required for boiler feed, adding alkalizing being required to raise the pH to the recommended value. Concentrates generated in nanofiltration and reverse osmosis can be availed as liquid fertilizer in agriculture, but they must be diluted in the irrigation water, in order to adjust the salt concentration allowed for the least tolerant crops patterns
Resumo:
Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios