10 resultados para Metamaterial

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical and numerical analysis of the parameters of a rectangular microstrip antenna with metamaterial substrate. The metamaterial (MTM) theory was applied along with Transverse Transmission Line (LTT) method to characterize substrate quantities and obtain the general equations of the electromagnetic fields. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. Electromagnetic principes are used to obtained parameters such as complex resonance frequency, bandwidth and radiation pattern were then obtained. Different metamaterial and antenna configurations were simulated to miniaturize them physically and increase their bandwidth, the results of which are shown through graphics. The theoretical computational analysis of this work proved to be accurate when compared to other studies, and may be used for other metamaterial devices. Conclusions and suggestions for future work are also proposed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metamaterials have attracted a great attention in recent years mostly due to their electromagnetic properties not found in nature. Since metamaterials began to be synthesized by the insertion of artificially manufactured inclusions in a medium specified host , it provides the researcher a broad collection of independent parameters such as the electromagnetic properties of the material host. In this work was presents an investigation of the unique properties of Split Ring Resonators and compounds metamaterials was performed. We presents a theoretical and numerical analysis , using the full-wave formalism by applying the Transverse Transmission Line - LTT method for the radiation characteristics of a rectangular microstrip antenna using metamaterial substrate, as is successfully demonstrated the practical use of these structures in antennas. We experimentally confirmed that composite metamaterial can improved the performance of the structures considered in this thesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis for the radiation characteristics of rectangular microstrip antenna using metamaterial substrate. The full wave analysis is performed in the Fourier transform domain through the application of the Transverse Transmission Line - TTL method. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. The general equations for the electromagnetic fields of the antenna are developed using the Transverse Transmission Line - TTL method. Imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency and return loss for different configurations and substrates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metamaterials have attracted great attention in recent decades, due to their electromagnetic properties which are not found in nature. Since metamaterials are now synthesized by the insertion of artificially manufactured inclusions in a specified homogeneous medium, it became possible for the researcher to work with a wide collection of independent parameters, for example, the electromagnetic properties of the material. An investigation of the properties of ring resonators was performed as well as those of metamaterials. A study of the major theories that clearly explain superconductivity was presented. The BCS theory, London Equations and the Two-Fluid Model are theories that support the application of superconducting microstrip antennas. Therefore, this thesis presents theoretical, numerical and experimental-computational analysis using full-wave formalism, through the application of the Transverse Transmission Line – LTT method applied in the Fourier Transform Domain (FTD). The LTT is a full wave method, which, as a rule, obtains the electromagnetic fields in terms of the transverse components of the structure. The inclusion of the superconducting patch is performed using the complex resistive boundary condition. Results of resonant frequency as a function of antenna parameters are obtained. To validate the analysis, computer programs were developed using Fortran, simulations were created using the commercial software, with curves being drawn using commercial software and MATLAB, in addition to comparing the conventional patch with the superconductor as well as comparing a metamaterial substrate with a conventional one, joining the substrate with the patch, observing what improves on both cas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, the materials used as substrates in the project of microstrip antennas are: isotropic, anisotropic dielectrics and ferrimagnetic materials (magnetic anisotropy). The use of ferrimagnetic materials as substrates in microstrip patch antennas has been concentrated on the analysis of antennas with circular and rectangular patches. However, a new class of materials, called metamaterials, has been currently the focus of a great deal of interest. These materials exhibit bianisotropic characteristics, with permittivity and permeability tensors. The main objective of this work is to develop a theoretical and numerical analysis for the radiation characteristics of annular ring microstrip antennas, using ferrites and metamaterials as substrates. The full wave analysis is performed in the Hankel transform domain through the application of the Hertz vector potentials. Considering the definition of the Hertz potentials and imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency, radiation pattern, return loss, and antenna bandwidth as a function of the annular ring physical parameters, for different configurations and substrates. The theoretical analysis was developed for annular ring microstrip antennas on a double ferrimagnetic/isotropic dielectric substrate or metamaterial/isotropic dielectric substrate. Also, the analysis for annular ring microstrip antennas on a single ferrimagnetic or metamaterial layer and for suspended antennas can be performed as particular cases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical, numerical and computation analysis of parameters of a rectangular microstrip antenna with metamaterial substrate, fin line as a coupler and also integrated devices like integrated filter antenna. It is applied theory to full-wave of Transverse Transmission Line - TTL method, to characterize the magnitude of the substrate and obtain the general equations of the electromagnetic fields. About the metamaterial, they are characterized by permittivity and permeability tensor, reaching to the general equations for the electromagnetic fields of the antenna. It is presented a study about main representation of PBG(Photonic Band Gap) material and its applied for a specific configuration. A few parameters are simulated some structures in order to reduce the physical dimensions and increase the bandwidth. The results are presented through graphs. The theoretical and computational analysis of this work have shown accurate and relatively concise. Conclusions are drawn and suggestions for future work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstrip antennas are subject matter in several research fields due to its numerous advantages. The discovery, at 1999, of a new class of materials called metamaterials - usually composed of metallic elements immersed in a dielectric medium, have attracted the attention of the scientific community, due to its electromagnetic properties, especially the ability to use in planar structures, such as microstrip, without interfering with their traditional geometry. The aim of this paper is to analyze the effects of one and bidimensional metamaterial substrates in microstrip antennas, with different configurations of resonance rings, SRR, in the dielectric layer. Fractal geometry is applied to these rings, in seeking to verify a multiband behavior and to reduce the resonance frequency of the antennas. The results are then given by commercial software Ansoft HFSS, used for precise analysis of the electromagnetic behavior of antennas by Finite Element Method (FEM). To reach it, this essay will first perform a literature study on fractal geometry and its generative process. This paper also presents an analysis of microstrip antennas, with emphasis on addressing different types of substrates as part of its electric and magnetic anisotropic behavior. It s performed too an approach on metamaterials and their unique properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esse trabalho tem como objetivo apresentar configurações de substratos dielétricos inovadores projetados e fabricados a partir de estruturas metamateriais. Para isso, são avaliados diversos fatores que podem influenciar no seu desempenho. A princípio, foi feito um levantamento bibliográfico a respeito dos temas, que estão relacionados com as pesquisas sobre: materiais dielétricos, metamateriais e interferometria óptica. São estudados, pesquisados e desenvolvidos dois projetos experimentais propostos, que comprovam a eficiência de métodos, para se alcançar a permeabilidade magnética negativa na formação de metamateriais. O primeiro projeto é a produção de uma nova estrutura, com u anel ressoador triangular equilateral (Split Equilateral Triangle Resonator - SETR). O segundo projeto: aplica os princípios da interferometria óptica, especialmente, com o interferômetro de Fabry-Perot. Técnicas para obtenção dos dispositivos que complementam a placa metamaterial como substrato foram pesquisadas na literatura e exemplificadas principalmente por meio de simulações e medições. Foram feitas comparações, simulações e medições de estruturas convencionais e especiais. As experiências se concentram nas evoluções e modelagens de substratos metamateriais com aplicações em antenas de microfita. As melhorias de alguns parâmetros de desempenho de antenas também são relatadas. As simulações das antenas foram feitas nos programas computacionais comerciais. Os resultados medidos foram obtidos com um analisador vetorial de redes da Rhode and Schwarz modelo ZVB 14.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esse trabalho tem como objetivo apresentar configurações de substratos dielétricos inovadores projetados e fabricados a partir de estruturas metamateriais. Para isso, são avaliados diversos fatores que podem influenciar no seu desempenho. A princípio, foi feito um levantamento bibliográfico a respeito dos temas, que estão relacionados com as pesquisas sobre: materiais dielétricos, metamateriais e interferometria óptica. São estudados, pesquisados e desenvolvidos dois projetos experimentais propostos, que comprovam a eficiência de métodos, para se alcançar a permeabilidade magnética negativa na formação de metamateriais. O primeiro projeto é a produção de uma nova estrutura, com u anel ressoador triangular equilateral (Split Equilateral Triangle Resonator - SETR). O segundo projeto: aplica os princípios da interferometria óptica, especialmente, com o interferômetro de Fabry-Perot. Técnicas para obtenção dos dispositivos que complementam a placa metamaterial como substrato foram pesquisadas na literatura e exemplificadas principalmente por meio de simulações e medições. Foram feitas comparações, simulações e medições de estruturas convencionais e especiais. As experiências se concentram nas evoluções e modelagens de substratos metamateriais com aplicações em antenas de microfita. As melhorias de alguns parâmetros de desempenho de antenas também são relatadas. As simulações das antenas foram feitas nos programas computacionais comerciais. Os resultados medidos foram obtidos com um analisador vetorial de redes da Rhode and Schwarz modelo ZVB 14.