25 resultados para Metals and alloys

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceramic filters are cellular structures that can be produced by various techniques, among which we highlight the replication method, or method of polymeric sponge. This method consists of impregnating polymeric foam with ceramic slurry, followed by heat treatment, where will occur decomposition of organic material and the sinter of the ceramic material, resulting in a ceramic whose structure is a replica of the impregnated sponge. Ceramic filters have specific properties that make this type of material very versatile, used in various technological applications such as filters for molten metals and burners, make these materials attractive candidates for high temperature applications. In this work we studied the systems Al2O3-LZSA ceramic filters processed in the laboratory, and commercial Al2O3-SiC ceramics filters, both obtained by the replica method, this work proposes the thermal and mechanical characterization. The sponge used in the processing of filters made in the laboratory was characterized by thermogravimetric analysis. The ceramic filters were characterized by compressive strength, flexural strength at high temperatures, thermal shock, permeability and physical characterization (density and porosity) and microstructural (MEV and X-rays). From the results obtained, the analysis was made of the mechanical behavior of these materials, comparing the model proposed by Gibson and Ashby model and modified the effective area and the tension adjusted, where the modified model adapted itself better to the experimental results, representing better the mechanical behavior of ceramic filters obtained by the replica method

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The occurrence of human cancer in the municipality of Lucrécia (RN, Brazil) has shown high frequencies (INCA, 2007). Tests of micronucleus (MN) and nuclear abnormalities (NA) were performed to assess the genotoxic potential of water from the Lucrécia dam, which is located in a semi-arid region under the influence of crop irrigation and irregular rainfall. Water samples were collected in this source for analyzing the concentration of cyanobacteria, metals and radioactivity. Erythrocytes of Nile tilapia (Oreochromis niloticus) were collected in dam and cells of human oral mucosa in the urban area of this municipality for the bioassays of MN and NA. In fish were also analyzed concentrations of metals in samples of liver and gills. The genotoxicity tests with biological samples of fish and humans have shown significant increases in the frequencies of MN and NA (p ≤ 0.05) and are indicative of increased DNA damage in relation to the control groups. In conclusion, the results obtained from water samples and biological municipality of Lucrécia indicates that the presence of chemical and microbiological pollutants, and increase of genotoxic in human of this municipality. We suggest the implementation of advanced water treatment, to prevent further degradation of the aquatic environment and decrease in the life quality. This research of environmental quality assessment was performed in order to contemplate a multi and interdisciplinary character of this water resource and that can induce genotoxic damage in the organisms in this study region

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brazil is the world s leading coffee producer. In 2008, 45.99 million of 60 kg bags of benefited coffee were produced. In the process of improvement 50% is grain and 50% is husk, thus, 1.38 million tons of coffee husk are produced annually. The husk is used as combustible in the drying and improvement ovens in the coffee farms, generating ash as residue. These ashes contain a high concentration of alkaline metals and earth metals, mainly K2O and CaO. This work studies the use of this residue in the ceramic tiles industry, as fluxing agents in substitution to the feldspar. Ten mixtures with equal ratios of clay and kaolin, proceeding from Bahia and the residue (varying from 30 to 5%) were defined and produced in uniaxial tool die of 60x20mm with approximately 5 mm of thickness and 45MPa compacting pressure. The samples were fired in four different temperatures: 1100 °C, 1150 °C, 1185 °C and 1200 °C during 60 minutes and characterized by means of X-ray fluorescence, X-ray diffraction, gravimetric thermal analysis and differential thermal analysis. The results of water absorption, apparent porosity, linear shrinkage, XRD, dilatometry, flexural strength and SEM were also analysed. The test specimen with addition of 10% of ash fired in 1200 °C resulted in 0.18% water absorption and 40.77 MPa flexural strength, being classified as porcelain stoneware tiles according to ABNT, UNI and ISO norms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emerald mining is an important area of the economy in Brazil, country which is in second place among the exporting nations of this gem. Due to the process of extraction, a great amount of reject is generated. Since there is no appropriate destination, the reject is abandoned around the mining industries, contributing to environment degradation. Nowadays, some of the most relevant things to an industry in general are: energy conservation, cost reduction, quality and productivity enhancement. The production of isolating, transformed refractory materials achieves the sustainability dimension when protection of the environment is incorporated to such process. This work investigates the use of emerald mining rejects in the ceramic body of refractory materials, aiming at obtaining a product whose characteristics are compatible with commercial products and, at the same time, allow the use of such rejects to solve the environmental issue caused by its disposal in nature. X-ray fluorescence analysis show that the emerald reject obtained after the flotation to extract molybdenum and mica has 70% of silica and alumina (SiO2+Al2O3) and 21% of a basic oxides and alkaline metals and earthy alkaline mixture (Na2O, K2O, CaO e MgO). Because of the significant amount of silica and alumina present in the reject, four refractory ceramic bodies were prepared. Samples with a rectangular shape and dimensions 100x50x10 mm were pressed in a steel mold at 27,5 MPa and sintered at 1200ºC for 40 min. under environment atmosphere in a resistive oven. The sintered samples were characterized in relation to the chemical composition (FRX), mineralogical composition (DRX), microstructure (MEV) and physical and mechanical properties. The results indicate that the mixture with 45% of reject, 45% of alumina and 10% of kaolin presents a refractory quality of 1420ºC, dimensional linear variation below 2.00%, apparent specific mass of 1,56 g/cm3 and porosity of 46,68%, which demonstrates the potential use of the reject as raw material for the industry of isolating transformed refractory materials

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Petroleum can be associated or not with natural gas, but in both cases water is always present in its formation. The presence of water causes several problems, such as the difficulty of removing the petroleum from the reservoir rock and the formation of waterin-oil and oil-in-water emulsions. The produced water causes environmental problems, which should be solved to reduce the effect of petroleum industry in the environment. The main objective of this work is to remove simultaneously from the produced water the dispersed petroleum and dissolved metals. The process is made possible through the use of anionic surfactants that with its hydrophilic heads interacts with ionized metals and with its lipophilic tails interacts with the oil. The studied metals were: calcium, magnesium, barium, and cadmium. The surfactants used in this research were derived from: soy oil, sunflower oil, coconut oil, and a soap obtained from a mixture of 5wt.% coconut oil and 95wt.% animal fat. It was used a sample of produced water from Terminal de São Sebastião, São Paulo. As the concentration of the studied metals in produced water presented values close to 300 mg/L, it was decided to use this concentration as reference for the development of this research. Molecular absorption and atomic absorption spectroscopy were used to determine petroleum and metals concentrations in the water sample, respectively. A constant pressure filtration system was used to promote the separation of solid and liquid phases. To represent the behavior of the studied systems it was developed an equilibrium model and a mathematical one. The obtained results showed that all used surfactants presented similar behavior with relation to metals extraction, being selected the surfactant derived from soy oil for this purpose. The values of the partition coefficients between the solid and liquid phases " D " for the studied metals varied from 0.2 to 1.1, while the coefficients for equilibrium model " K " varied from 0.0002 and 0.0009. The removal percentile for oil with all metals associated was near 100%, showing the efficiency of the process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20° of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58°C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70°C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among the waste generated in the petrochemical industry water associated with oil production is the most important. It is considered one of the great challenges due to the presence of considered toxic chemicals present in this composition. The presence of these substances difficult to reuse the water associated with the enhanced recovery processes, so that prior to their reuse or disposal, treatment is necessary. This paper aimed to study the removal efficiency of chemical species: Ba2+, Ni2+, Cd2+, Cu2+, Cr3+, Sr2+ and Zn2+, present in the composition of the water associated with oil production by electrocoagulation. The evaluation of removal of these chemical species was performed by laboratory tests using electrochemical batch reactors and continuous flow. Initial tests were performed with electrocoagulation of synthetic wastewater in batch reactor using iron electrode. Results of removal of Zn2+ and Ni2+ were 78 % and 59 % respectively. While the percentage of removed Ba2+ was 19 % by 30 minutes of treatment and by applying current of 1.10 A. The tests were performed on effluent batch reactor applying the electrochemical technique with stainless steel electrodes 304, the objective was to remove part of the dispersed oil and also of organic compounds in the effluent. Under the experimental conditions used, the maximum result was obtained TOG was 60 % and TOC was approximately 50 % compared to the initial concentration. In the experiments carried out in continuous reactor, with effluent semisynthetic, have been used electrodes of iron and aluminum and the results were 100 % removal of Cd2+, Cu2+, Cr3+ and Zn2+ and 77 % of Sr2+. These percentages were only attainable through the use of the iron electrode. However, when the electrode was replaced by aluminum, there was a reduction in the percentage of removal to 65 %, using the same flow rate and current. Therefore according to the results obtained using the iron electrode was more effective in removing these metals and the conditions of lower current and lower flow rate was satisfactory, as observed in the experimental design adopted

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The petroleum production is associated to the produced water, which has dispersed and dissolved materials that damage not only the environment, but also the petroleum processing units. This study aims at the treatment of produced water focusing mainly on the removal of metals and oil and using this treated water as raw material for the production of sodium carbonate. Initially, it was addressed the removal of the following divalent metals: calcium, magnesium, barium, zinc, copper, iron, and cadmium. For this purpose, surfactants derived from vegetable oils, such as coconut oil, soybean oil, and sunflower oil, were used. The investigation showed that there is a stoichiometric relationship between the metals removed from the produced water and the surfactants used in the process of metals removal. It was also developed a model that correlates the hydrolysis constant of saponified coconut oil with the metal distribution between the resulting stages of the proposed process, flocs and aqueous phases, and relating the results with the pH of the medium. The correlation coefficient obtained was 0.963. Next, the process of producing washing soda (prefiro soda ahs ou sodium carbonate) started. The resulting water from the various treatment approaches from petroleum production water was used. During this stage of the research, it was observed that the surfactant assisted in the produced water treatment, by removing some metals and the dispersed oil entirety. The yield of sodium carbonate production was approximately 80%, and its purity was around 95%. It was also assessed, in the production of sodium carbonate, the influence of the type of reactor, using a continuous reactor and a batch reactor. These tests showed that the process with continuous reactor was not as efficient as the batch process. In general, it can be concluded that the production of sodium carbonate from water of oil production is a feasible process, rendering an effluent that causes a great environmental impact a raw material with large scale industrial use

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effluent color resulting from textile dyeing processes has been one of the biggest environmental problems faced by the textile industry. In particular, reactive dyes are highly resistant to conventional wastewater treatment methods. New technologies have been contemplated, some of which have been applied in industrial treatment plants, but color removal has not been efficiently attained. Since microemulsion systems provide good results in heavy metals and proteins extraction processes, their use in dyes extraction has been suggested and investigated. In this work, a real textile wastewater from an exhaustion dyebath has been treated, which contains the following reactive dyes: Procion Yellow H-E4R (CI Reactive Yellow 84), Procion Blue H-ERD (CI Reactive Blue 160) and Procion Red H-E3B (CI Reactive Red 120), in addition to auxiliary compounds normally found in dyeing processes with reactive dyes. The dyes Remazol Blue RR and Remazol Turquoise Blue G (Reactive Blue 21) have also been examined in view of the presence of heavy metals in these molecules. The microemulsion system comprised dodecyl ammonium chloride (as a cationic surfactant), water or wastewater as aqueous phase, kerosene as oil phase, and one of the following alcohols as cosurfactant: isoamyl alcohol, n-butyl alcohol and n-octyl alcohol. The pseudo-ternary diagrams were constructed in order to define Winsor s equilibrium regions. The influence of parameters such as pH, C/S (cosurfactant/surfactant) ratio, distribution coefficient, initial dye concentration, salinity, temperature, phases relative amounts, loading capacity of the microemulsion phase and dye reextraction rate has also been investigated. An experimental planning (Scheffé Net) was used to optimize the extraction process. The removal of color and metals reached levels as high as 99%

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The urban drainage is one of the powers of environmental sanitation and its scope is the quantitative and qualitative aspects. In decision making of managers and the engineering aspects of design are almost always taken into account only the quantitative aspects. However, the waters of the runoff have the highest concentrations of pollutants at the beginning of precipitation. Thus, if the plot pollution removed, the remaining portion can be used for other purposes. This work has aimed to present the variation of water quality of two drainage basins in the city of Natal / RN-Brazil to support the implementation of drainage to consider the qualitative aspect, and identify potential for the use of water. The basins (M and C) are analyzed closed-type, are in the urban area, are predominantly residential occupation and its waters are used for detention ponds and infiltration. The samples were divided into three phases, the first two direct to final points in a basin and the third in traps distributed over the surface drainage. The parameters had been analyzed were pH, conductivity, dissolved oxygen, Color, Turbidity, COD, Ammonia, nitrite, nitrate, total phosphorus, orthophosphate, Sediments solids, total solids, chloride, sulfate, alkalinity, calcium, magnesium, sodium, potassium, Heavy Metals (Chromium, Cadmium, Lead, Zinc and Copper), Eschichia coli and total coliforms. The parameters studied showed high initial pollution load, events and located in different proportions, except nitrite, heavy metals and biological indicators. The size of the surface drainage and topographic its features influence the quality of water. However, the form of sampling is crucial in the qualitative study in the basin. The samplers developed at work, were generated economic and representative results. The urban rainwater presents organic faecal indicators. The runoff of water from both basins shows no risk of salinity and sodicity for use in irrigation, should be noted the content of chloride in the choice of method of irrigation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contamination of the waters resources for wastewater from industrial, agricultural, and domestic sources is a serious environment problem, compromising its use for human consumption and agriculture. The Extremoz-RN Lake is an important freshwater source for the supply of the city of Natal, supplying a population of approximately 160,000 habitants. This aquatic body is located near an industrial pole which can be a serious risk factor for quality of its waters. The objectives of this study were examined the genotoxicity of Extremoz Lake between September of 2006 and January of 2008, by a combination of the Allium micronucleus test, piscine micronucleus test and the comet assay in erythrocytes from peripheral blood of Oreochromis niloticus. Additionally, the level of eight different heavy metals was quantified through spectrometry of atomic absorption of flame. The Allium test did not detect increase in the frequencies of micronucleus in none of the analyzed periods, however a strong cytotoxic activity was demonstrated for decrease in mitotic index in the analyses carried in April and July of 2007. Negative results had been detected in the frequencies of micronucleus in O. niloticus. A statistic significant increase was observed in the levels of DNA damage in comet assay carried in July of 2007. The results of the chemical analysis had detected increase in the levels of cadmium, chromium, copper, nickel, lead and zinc in different periods. These results demonstrated an alteration of the water s quality of the Extremoz Lake caused for the contamination for heavy metals and increase of DNA strand breaks. The use of biomonitoring program of the heavy metal and other pollutants with genotoxic potential combinated with genotoxicity assays is recommends.