15 resultados para Metaheuristic
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Telecommunications play a key role in contemporary society. However, as new technologies are put into the market, it also grows the demanding for new products and services that depend on the offered infrastructure, making the problems of planning telecommunications networks, despite the advances in technology, increasingly larger and complex. However, many of these problems can be formulated as models of combinatorial optimization, and the use of heuristic algorithms can help solving these issues in the planning phase. In this project it was developed two pure metaheuristic implementations Genetic algorithm (GA) and Memetic Algorithm (MA) plus a third hybrid implementation Memetic Algorithm with Vocabulary Building (MA+VB) for a problem in telecommunications that is known in the literature as Problem SONET Ring Assignment Problem or SRAP. The SRAP arises during the planning stage of the physical network and it consists in the selection of connections between a number of locations (customers) in order to meet a series of restrictions on the lowest possible cost. This problem is NP-hard, so efficient exact algorithms (in polynomial complexity ) are not known and may, indeed, even exist
Resumo:
Particle Swarm Optimization is a metaheuristic that arose in order to simulate the behavior of a number of birds in flight, with its random movement locally, but globally determined. This technique has been widely used to address non-liner continuous problems and yet little explored in discrete problems. This paper presents the operation of this metaheuristic, and propose strategies for implementation of optimization discret problems as form of execution parallel as sequential. The computational experiments were performed to instances of the TSP, selected in the library TSPLIB contenct to 3038 nodes, showing the improvement of performance of parallel methods for their sequential versions, in executation time and results
Resumo:
This paper presents metaheuristic strategies based on the framework of evolutionary algorithms (Genetic and Memetic) with the addition of Technical Vocabulary Building for solving the Problem of Optimizing the Use of Multiple Mobile Units Recovery of Oil (MRO units). Because it is an NP-hard problem, a mathematical model is formulated for the problem, allowing the construction of test instances that are used to validate the evolutionary metaheuristics developed
Resumo:
Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of xploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique - Q-learning Algorithm - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) and Genetic Algorithm. The GRASP metaheuristic uses Q-learning instead of the traditional greedy-random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial population of high fitness, and after a determined number of generations, where the rate of diversity of the population is less than a certain limit L, it also was applied to supply one of the parents to be used in the genetic crossover operator. Another significant change in the hybrid genetic algorithm is the proposal of a mutually interactive cooperation process between the genetic operators and the Q-learning algorithm. In this interactive/cooperative process, the Q-learning algorithm receives an additional update in the matrix of Q-values based on the current best solution of the Genetic Algorithm. The computational experiments presented in this thesis compares the results obtained with the implementation of traditional versions of GRASP metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid methods. Both algorithms had been applied successfully to the symmetrical Traveling Salesman Problem, which was modeled as a Markov decision process
Resumo:
The present essay shows strategies of improvement in a well succeded evolutionary metaheuristic to solve the Asymmetric Traveling Salesman Problem. Such steps consist in a Memetic Algorithm projected mainly to this problem. Basically this improvement applied optimizing techniques known as Path-Relinking and Vocabulary Building. Furthermore, this last one has being used in two different ways, in order to evaluate the effects of the improvement on the evolutionary metaheuristic. These methods were implemented in C++ code and the experiments were done under instances at TSPLIB library, being possible to observe that the procedures purposed reached success on the tests done
Resumo:
The Car Rental Salesman Problem (CaRS) is a variant of the classical Traveling Salesman Problem which was not described in the literature where a tour of visits can be decomposed into contiguous paths that may be performed in different rental cars. The aim is to determine the Hamiltonian cycle that results in a final minimum cost, considering the cost of the route added to the cost of an expected penalty paid for each exchange of vehicles on the route. This penalty is due to the return of the car dropped to the base. This paper introduces the general problem and illustrates some examples, also featuring some of its associated variants. An overview of the complexity of this combinatorial problem is also outlined, to justify their classification in the NPhard class. A database of instances for the problem is presented, describing the methodology of its constitution. The presented problem is also the subject of a study based on experimental algorithmic implementation of six metaheuristic solutions, representing adaptations of the best of state-of-the-art heuristic programming. New neighborhoods, construction procedures, search operators, evolutionary agents, cooperation by multi-pheromone are created for this problem. Furtermore, computational experiments and comparative performance tests are conducted on a sample of 60 instances of the created database, aiming to offer a algorithm with an efficient solution for this problem. These results will illustrate the best performance reached by the transgenetic algorithm in all instances of the dataset
Resumo:
Combinatorial optimization problems have the goal of maximize or minimize functions defined over a finite domain. Metaheuristics are methods designed to find good solutions in this finite domain, sometimes the optimum solution, using a subordinated heuristic, which is modeled for each particular problem. This work presents algorithms based on particle swarm optimization (metaheuristic) applied to combinatorial optimization problems: the Traveling Salesman Problem and the Multicriteria Degree Constrained Minimum Spanning Tree Problem. The first problem optimizes only one objective, while the other problem deals with many objectives. In order to evaluate the performance of the algorithms proposed, they are compared, in terms of the quality of the solutions found, to other approaches
Resumo:
This work performs an algorithmic study of optimization of a conformal radiotherapy plan treatment. Initially we show: an overview about cancer, radiotherapy and the physics of interaction of ionizing radiation with matery. A proposal for optimization of a plan of treatment in radiotherapy is developed in a systematic way. We show the paradigm of multicriteria problem, the concept of Pareto optimum and Pareto dominance. A generic optimization model for radioterapic treatment is proposed. We construct the input of the model, estimate the dose given by the radiation using the dose matrix, and show the objective function for the model. The complexity of optimization models in radiotherapy treatment is typically NP which justifyis the use of heuristic methods. We propose three distinct methods: MOGA, MOSA e MOTS. The project of these three metaheuristic procedures is shown. For each procedures follows: a brief motivation, the algorithm itself and the method for tuning its parameters. The three method are applied to a concrete case and we confront their performances. Finally it is analyzed for each method: the quality of the Pareto sets, some solutions and the respective Pareto curves
Resumo:
The Multiobjective Spanning Tree is a NP-hard Combinatorial Optimization problem whose application arises in several areas, especially networks design. In this work, we propose a solution to the biobjective version of the problem through a Transgenetic Algorithm named ATIS-NP. The Computational Transgenetic is a metaheuristic technique from Evolutionary Computation whose inspiration relies in the conception of cooperation (and not competition) as the factor of main influence to evolution. The algorithm outlined is the evolution of a work that has already yielded two other transgenetic algorithms. In this sense, the algorithms previously developed are also presented. This research also comprises an experimental analysis with the aim of obtaining information related to the performance of ATIS-NP when compared to other approaches. Thus, ATIS-NP is compared to the algorithms previously implemented and to other transgenetic already presented for the problem under consideration. The computational experiments also address the comparison to two recent approaches from literature that present good results, a GRASP and a genetic algorithms. The efficiency of the method described is evaluated with basis in metrics of solution quality and computational time spent. Considering the problem is within the context of Multiobjective Optimization, quality indicators are adopted to infer the criteria of solution quality. Statistical tests evaluate the significance of results obtained from computational experiments
Resumo:
This work approaches the Scheduling Workover Rigs Problem (SWRP) to maintain the wells of an oil field, although difficult to resolve, is extremely important economical, technical and environmental. A mathematical formulation of this problem is presented, where an algorithmic approach was developed. The problem can be considered to find the best scheduling service to the wells by the workover rigs, taking into account the minimization of the composition related to the costs of the workover rigs and the total loss of oil suffered by the wells. This problem is similar to the Vehicle Routing Problem (VRP), which is classified as belonging to the NP-hard class. The goal of this research is to develop an algorithmic approach to solve the SWRP, using the fundamentals of metaheuristics like Memetic Algorithm and GRASP. Instances are generated for the tests to analyze the computational performance of the approaches mentioned above, using data that are close to reality. Thereafter, is performed a comparison of performance and quality of the results obtained by each one of techniques used
Resumo:
This work seeks to propose and evaluate a change to the Ant Colony Optimization based on the results of experiments performed on the problem of Selective Ride Robot (PRS, a new problem, also proposed in this paper. Four metaheuristics are implemented, GRASP, VNS and two versions of Ant Colony Optimization, and their results are analyzed by running the algorithms over 32 instances created during this work. The metaheuristics also have their results compared to an exact approach. The results show that the algorithm implemented using the GRASP metaheuristic show good results. The version of the multicolony ant colony algorithm, proposed and evaluated in this work, shows the best results
Resumo:
Committees of classifiers may be used to improve the accuracy of classification systems, in other words, different classifiers used to solve the same problem can be combined for creating a system of greater accuracy, called committees of classifiers. To that this to succeed is necessary that the classifiers make mistakes on different objects of the problem so that the errors of a classifier are ignored by the others correct classifiers when applying the method of combination of the committee. The characteristic of classifiers of err on different objects is called diversity. However, most measures of diversity could not describe this importance. Recently, were proposed two measures of the diversity (good and bad diversity) with the aim of helping to generate more accurate committees. This paper performs an experimental analysis of these measures applied directly on the building of the committees of classifiers. The method of construction adopted is modeled as a search problem by the set of characteristics of the databases of the problem and the best set of committee members in order to find the committee of classifiers to produce the most accurate classification. This problem is solved by metaheuristic optimization techniques, in their mono and multi-objective versions. Analyzes are performed to verify if use or add the measures of good diversity and bad diversity in the optimization objectives creates more accurate committees. Thus, the contribution of this study is to determine whether the measures of good diversity and bad diversity can be used in mono-objective and multi-objective optimization techniques as optimization objectives for building committees of classifiers more accurate than those built by the same process, but using only the accuracy classification as objective of optimization
Resumo:
Nonogram is a logical puzzle whose associated decision problem is NP-complete. It has applications in pattern recognition problems and data compression, among others. The puzzle consists in determining an assignment of colors to pixels distributed in a N M matrix that satisfies line and column constraints. A Nonogram is encoded by a vector whose elements specify the number of pixels in each row and column of a figure without specifying their coordinates. This work presents exact and heuristic approaches to solve Nonograms. The depth first search was one of the chosen exact approaches because it is a typical example of brute search algorithm that is easy to implement. Another implemented exact approach was based on the Las Vegas algorithm, so that we intend to investigate whether the randomness introduce by the Las Vegas-based algorithm would be an advantage over the depth first search. The Nonogram is also transformed into a Constraint Satisfaction Problem. Three heuristics approaches are proposed: a Tabu Search and two memetic algorithms. A new function to calculate the objective function is proposed. The approaches are applied on 234 instances, the size of the instances ranging from 5 x 5 to 100 x 100 size, and including logical and random Nonograms
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.