22 resultados para Mesocellular foam
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This study aimed to investigate the foam mat drying process of pineapple and mango pulp, as well as to evaluate the final product quality. Initially, the selection of fruit and additives was conducted based on density and stability determinations of mango, seriguela, umbu and pineapple foams. After selecting pineapple and mango for further studies, the fruit pulps and fruit foams were characterized in regard to their physicochemical composition. The temperature (60oC or 70oC) and the foam thickness (4 and 11 mm) were evaluated in accordance to the obtained drying curves and after model adjustment. Mango and pineapple powders obtained at the best process conditions were characterized in regard to their physicochemical composition, solubility, reconstitution time. Yoghurts were prepared with the addition of pineapple and mango powders and they were evaluated for their sensory acceptance. Results show that the best drying rates were achieved by using 70o C and layers 4mm thick for both fruits. The Page model successfully fitted the drying experimental data and it can be used as a predictive model. Pineapple and mango powders showed acid pH, high soluble solids content, low water activity (approx. 0.25), lipids between 1.46% and 2.03%, protein around 2.00%, and ascorbic acid content of 17,73 mg/100g and 14.32 mg/100g, for mango and pineapple, respectively. It was observed higher ascorbic acid retention for pineapple and mango powders processed at 70o C, which would be explained by the lower drying time applied. The fruit powders exhibited high solubility and fast reconstitution in water. The sensory acceptance indexes for yoghurts with the addition of both fruit powders were higher than 70%, which reflect the satisfactory product acceptance
Resumo:
Ceramic filters are cellular structures that can be produced by various techniques, among which we highlight the replication method, or method of polymeric sponge. This method consists of impregnating polymeric foam with ceramic slurry, followed by heat treatment, where will occur decomposition of organic material and the sinter of the ceramic material, resulting in a ceramic whose structure is a replica of the impregnated sponge. Ceramic filters have specific properties that make this type of material very versatile, used in various technological applications such as filters for molten metals and burners, make these materials attractive candidates for high temperature applications. In this work we studied the systems Al2O3-LZSA ceramic filters processed in the laboratory, and commercial Al2O3-SiC ceramics filters, both obtained by the replica method, this work proposes the thermal and mechanical characterization. The sponge used in the processing of filters made in the laboratory was characterized by thermogravimetric analysis. The ceramic filters were characterized by compressive strength, flexural strength at high temperatures, thermal shock, permeability and physical characterization (density and porosity) and microstructural (MEV and X-rays). From the results obtained, the analysis was made of the mechanical behavior of these materials, comparing the model proposed by Gibson and Ashby model and modified the effective area and the tension adjusted, where the modified model adapted itself better to the experimental results, representing better the mechanical behavior of ceramic filters obtained by the replica method
Resumo:
Brazil has vast amounts of hydric resources, whose quality has been deteriorating due to pollutant dumping. Household waste disposal is one of the main sources of water pollution, stimulating bacteria proliferation and introducing microorganisms, including those from fecal matter. Conventional water disinfection methods are a solution, but on the downside, they lead to the formation byproducts hazardous to human health. In this study, aiming to develop bactericidal filters for the disinfection of drinking water; silver nanoparticles were deposited on alumina foams through three routes: sputtering DC, dip coating and in situ chemical reduction of silver nitrate. The depositions were characterized through X-ray diffraction, scanning electron microscopy and EDS element mapping. The influence of the depositions on permeability and mechanical properties of the ceramic foams was assessed and, in sequence, a preliminary antibacterial efficiency analysis was carried out. Characterization results indicate that the chemical reduction routes were efficient in depositing homogeneously distributed silver particles and that the concentration of the metallic precursor salt affects size and morphology of the particles. The antibacterial efficiency analysis indicates that the chemical reduction filters have potential for water disinfection
Resumo:
Foam was developed as a novel vehicle for streptokinase with the purpose of increasing the contact time and area between the fibrinolytic and the target thrombus, which would lead to a greater therapeutic efficacy at lower doses, decreasing the drug s potential to cause bleeding. Fibrinolytic foams were prepared using CO2 and human albumin (at different v:v ratios), as the gas and liquid phases, respectively, and streptokinase at a low total dose (100,000 IU) was used as fibrinolytic agent conveyed in 1 mL of foam and in isotonic saline solution. The foams were characterized as foam stability and apparent viscosity. The thrombolytic effect of the streptokinase foam was determined in vitro as thrombus lysis and the results were compared to those of a fibrinolytic solution (prepared using the same dose of streptokinase) and foam without the fibrinolytic. In vitro tests were conducted using fresh clots were weighed and placed in test tubes kept at 37 ° C. All the samples were injected intrathrombus using a multiperforated catheter. The results showed that both foam stability and apparent viscosity increased with the increase in the CO2:albumin solution ratio and therefore, the ratio of 3:1 was used for the incorporation of streptokinase. The results of thrombus lysis showed that the streptokinase foam presented the highest thrombolytic activity (44.78 ± 9.97%) when compared to those of the streptokinase solution (32.07 ± 3.41%) and the foam without the drug (19.2 ± 7.19%). We conclude that fibrinolytic foam showed statistically significant results regarding the enhancement of the lytic activity of streptokinase compared to the effect of the prepared saline solution, thus it can be a promising alternative in the treatment of thrombosis. However, in vivo studies are needed in order to corroborate the results obtained in vitro
Resumo:
They are in this study the experimental results of the analysis of thermal performance of composite material made from a plant matrix of polyurethane derived from castor oil of kernel of mamona (COF) and loading of clay-mineral called vermiculite expanded. Bodies of evidence in the proportions in weight of 10%, 15% and 20% were made to determine the thermal properties: conductivity (k), diffusivity (ά) and heat capacity (C), for purposes of comparison, the measurements were also performed the properties of polyurethane of castor without charge and also the oil polyurethane (PU), both already used in thermal insulation. Plates of 0.25 meters of material analyzed were manufactured for use as insulation material in a chamber performance thermal coverage. Thermocouples were distributed on the surface of the cover, and inside the material inside the test chamber and this in turn was subjected to artificial heating, consisting of a bank of incandescent lamps of 3000 w. The results obtained with the composite materials were compared with data from similar tests conducted with the camera alone with: (a) of oil PU, (b) of COF (c) glass wool, (d ) of rock wool. The heat resistance tests were performed with these composites, obtaining temperature limits for use in the range of 100 º C to 130 º C. Based on the analysis of the results of performance and thermal properties, it was possible to conclude that the COF composites with load of expanded vermiculite present behavior very close to those exhibited by commercial insulation material
Resumo:
Porous ceramics have many applications: thermal insulation, catalytic support, materials to fire protection, filters, and others. There are many techniques to production of ceramic filters. One technique to obtain ceramic filters is the replication method. This method consists in the impregnation of polymeric foam with ceramic slurry followed by a heating treatment that will burn out the organic elements and sintering of the material, resulting of a replication of the original foam. To perform their functions ceramic filters must satisfy mechanical requirements and permeability parameters (darcian k1 and no-darcian k2). The permeability and the strength of the ceramic material are dependent of the pore size and pore distribution. To the use at high temperatures the evaluation of mechanical properties in these temperatures is necessary. In this work the mechanical behavior of two commercial porous ceramics (10 and 40 poros per inch) was studied these materials were submitted to compression and four-point flexure test (room temperature, at 1000 °C, after thermal shock). Density and porosity measurements, permeability tests and microstructural analysis by scanning electronic microscopy (SEM) were realized. The Results showed that the decrease of mechanical strength of these materials, when submitted to thermal shock, occur for propagation of new cracks from cracks pre-existing and the permeability depends of the pore size
Resumo:
The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load
Resumo:
Nowadays, when accidents with oil tanker or shore tanks occur and there is oil spill, some arrangements are made in order to repress and to fix the situation. For the containment, barriers or detours are usually made of synthetic materials such as polyurethane foam. In order to clear water away, techniques like in loco burning, biodegradant agents, dispersant agents and sorbent materials application are used. The most of the sorbent materials are also synthetic and they are used because it is easy to store them and their availability in market. This dissertation introduces the study of vegetable fibers of pineapple leaf fibers (Ananas comosus (L.) Merr.), cotton fibers (Gossypium herbaceum L.), kapok fibers (Ceiba pentandra (L.) Gaertn.), curauá fibers (Ananas erectifolius L.B. Sm.) and sisal fibers (Agave sisalana Perrine) related to their capacity of sorption of oil in case of accidental spill in the ocean. This work evaluates the substitution possibility of synthetic materials by natural biodegradable materials with less cost
Resumo:
In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment
Resumo:
Ceramics with porous cellular structure, called ceramic foams, have a potential use in several applications, such as: thermal insulation, catalyst supports, filters, and others. Among these techniques to obtain porous ceramics the replication method is an important process. This method consists of impregnation of a sponge (usually polymer) with ceramic slurry, followed by a heat treatment, which will happen the decomposition of organic material and sintering the ceramic material, resulting in a ceramic structure which is a replica of impregnated sponge. Knowledge of the mechanical properties of these ceramics is important for these materials can be used commercially. Gibson and Ashby developed a mathematical model to describe the mechanical behavior of cellular solids. This model wasn´t for describing the ceramics behavior produced by the replica method, because it doesn´t consider the defects from this type of processing. In this study were researched mechanical behavior of porous alumina ceramics obtained by the replica method and proposed modifications to the model of Gibson and Ashby to accommodate this material. The polymer sponge used in processing was characterized by thermogravimetric analysis and scanning electron microscopy. The materials obtained after sintering were characterized by mechanical strength tests on 4-point bending and compression, density and porosity and by scanning electron microscopy. From these results it was evaluated the mechanical strength behavior compared to Gibson and Ashby model for solid cellular structure and was proposed a correction of this model through a factor related to struts integrity degree, which consider fissures present in the structure of these materials besides defects geometry within the struts
Resumo:
The standardization of the bovine skin thickness in the leather industry generates a residue known as wet-blue . At the end of twentieth century, the brazilian industry discarded about 131 thousand tons of this residue in nature, provoking a great environmental liability. In this paper is presented the analyses of the termophysical properties, thermal and volumetric expansion performance of a composite of vegetable resin of castor oil plant (Ricinus communis) with load of industrial residue of leather "wet-blue", for application as thermal isolation material of warm surfaces. There were considered four percentile levels of residue load in the proportions in mass of 0%, 5%, 10% and 15%, added to the expansible resin of castor oil plant in two configurations: sawed leather and crushed leather in a smaller particle (powder) by grinding in a mill of balls. Twenty-one proof bodies were produced for termophysical properties analysis (three for each configuration) and four proof bodies for rehearsals of thermal acting. Analyses of thermal acting were done in test cameras. The results of the rehearsals were compared to those obtained considering the castor oil plant foam without residue addition. A small reduction of the thermal conductivity of the composite was observed in the proportion of 10% of leather residue in both configurations. Regarding thermal conductivity, calorific capacity and diffusivity, it was verified that the proposed composite showed very close values to the commercial insulating materials (glass wool, rock wool, EPS). It was still demonstrated the technical viability of the use of composite as insulating thermal for systems of low potency. The composite presented larger volumetric expansion with 15% of sawed residue of leather.
Resumo:
This work proposes the development of an innovative material made from a vegetable polyurethane matrix and load of industrial waste, from retread tires, for thermal insulation and environmental comfort. Experimental procedures are presented, as well as the results of the thermal and acoustic performance of this composite material, made from an expansive foam derived from the castor seed oil and fiber of scrap tires. The residue was treated superficially with sodium hydroxide, to eliminate contaminants, and characterized macroscopically and microscopically. Samples were produced with addition of residues at levels of 5%, 10%, 15% and 20% by weight, for determination of thermal properties: conductivity, heat capacity and thermal diffusivity, sound absortion index and density. The results were compared to commercially available thermal insulation and sound absorbing products. According to the analysis of results, it was concluded that the developed composite presents characteristics that qualify it as a thermal insulation with superior performance, compared to commercial available insulation, and sound absorption capacity greater than the castor oil polyurethane s, without addition of the residue
Resumo:
It presents a new type of insulation for ductwork hot water, which can be used in solar systems for heating water, which consists of a composite of different compositions based on plaster, cement and EPS ground, palm and water. This composite has as its main features easy assembly and manufacturing processes and low cost. Comparative results will be presented on the tests of materials and thermal tubes proposed. Four formulations were used to manufacture tubes with three diameters 70, 65 and 42mm. It was also tested conventionally used for elastomeric foam insulation to 110 ° C, for a comparative analysis with the composite pipe insulator proposed. It will demonstrate that the cost of manufacturing of such tubes is competitive with alternative elastomeric foam tested, but results of the composite tube to the temperature range studied, are lower. Another drawback of the composite insulator tube is its large mass. It would be important to test such a composite for greater levels of temperature to a diagnostic technique competitive with conventionally used insulators. A positive factor of using the proposed composite-tube would be the recycling of EPS so damaging to the environment, representing an environmentally friendly application of science
Resumo:
A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes