2 resultados para Mesaticephalic skull

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study a series of 11 different compositions of Ti-Zr binary alloys resistance to aggressive environment, i. e., their ability to keep their surface properties and mass when exposed to them as a way to evaluate their performance as biomaterials. The first stage was devoted to the fabrication of tablets from these alloys by Plasma-Skull casting method using a Discovery Plasma machine from EDG Equipamentos, Brazil. In a second stage, the chemical composition of each produced tablet was verified. In a third stage, the specimen were submitted to: as-cast microstructure analysis via optical and scanning electron microscopy (OM and SEM), x-ray dispersive system (EDS) chemical analysis via SEM, Vickers hardness tests for mechanical evaluation and corrosion resistence tests in a 0.9% NaCl solution to simulate exposition to human saliva monitored by open circuit potential and polarization curves. From the obtained results, it was possible to infer that specimens A1 (94,07 wt% Ti and 5,93% wt% Zr), A4 (77,81 wt % Ti and 22,19 wt % Zr) and A8 (27,83 wt% Ti and 72,17 wt% Zr), presented best performance regarding to corrosion resistance, homogeneity and hardness which are necessary issues for biomaterials to be applied as orthopedic and odontological prosthesis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 3-Hidroxytyramine/dopamine (DA) is a monoamine of catecholamine family and isthe precursor substance synthesis of noradrenaline and adrenaline, having the enzymeTyrosine Hydroxylase (TH) as this regulatory process. In addition, the DA has theability to act as a neurotransmitter in the Central Nervous System - SNC, being themain neurotransmitter of brain nuclei, namely of A8 to A16. The nuclei of the midbrainthat express DA are the Retrorubral Field (RRF, A8), the Substantia Nigra parsCompacta (SNc, A9) and the Ventral Tegmental Area (VTA, A10). Such nuclei areinvolved in complex three circuitry that are the mesostriatal, mesolimbic andmesocotical and are directly related with several behavioral manifestations as motricitycontrol, reward signaling in behavioral learning, motivation and pathologicalconditions, such as Parkinson's Disease and schizophrenia. Interestingly, many of themorphological bases of these neural disturbance remain unknown. Considering therelevance of mesencephalic dopaminergic nuclei, the aim of this research is tocharacterize morphologically the dopaminergic nuclei (clusters A8, A9 and A10) of themidbrain of the bat (Artibeus planirostris). The Artibeus planirostris is a common bat inRio Grande do Norte. Ten animals were used in this research. The animals wereanesthetized, perfused, and the brain was removed from the skull. After dehydration insucrose, the brain was underwent microtomy. Saggital and coronal sections wereobtained and collected in six separate series. The series were Nissl-stained to identifythe cytoarchitectonic boundaries and the other series were subjected toimmunohistochemistry for TH. After cytoarchitectonic analysis and TH+ cellsidentification was possible to establish the anatomical boundaries of the nuclei, as wellas the subdivisions of three of the midbrain dopaminergic nuclei. The SNc is the mostrostral nucleus observed in the midbrain and is identified throughout the rostrocaudalextension of the midbrain. The VTA neurons were seen immediately caudal to the SNcappearance. The RRF neurons were observed just in the caudal levels of the midbrain.The SNc in Artibeus planirostris shows a particular feature, the tail of the SNc. The tailhave been described just in two other studied species. The present work shows aparticular variation in the organizational morphology of the SNc in the artibeus andcontribute to understand the phylogenetic routes by which the dopaminergic system hasevolved.