11 resultados para Membranemechanics, AFM, pore spanning membranes, nano-BLMs

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This a study on the achievement of alumina membranes by the method of anodizing. From this method got up a layer of aluminum oxide on the anodic metal, who presented the basic properties necessary for the application as a support for the production and acquisition of nanomaterials, such as porosity nano and resistance to high temperature, and other properties, as resistance to corrosion, and chemical, high ranking of the structure and pore size of the pores. The latter, ranging from 10 to 100nm depended on the electrolyte used, which in this study was the H2SO4. To remove all remaining aluminum, it is a bath of dissolution with HCl and CuCl where the residual aluminum has been withdrawn, and the deep pores were opened after chemical treatment with NaOH. After the dissolution, the membranes were calcined at temperatures of 300, 600 and 900° C, and sintered at temperatures of 1200 and 1300º C to win mechanical strength, porosity and observe the desired crystallization. Then went through analyses of composition through X-ray diffraction and morphology of the microstructure through a scanning electron microscope. The method was effective for obtaining alumine membranes applied in the processes of production of materials in nano

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To aureus α-HL channel, we used the cysteine-scanning mutagenesis technique. Twenty-four mutants were produced from the substitution of a single aminoacid of the primary structure of the α-HL pro this yzed after the incorporation of a mutant channel in planar lipid bilayer membranes. The modified proteins were studied in the absence and presence of watersoluble specific sulphydryl-specific reagents, in order to introduce a strong positive or negative harge at positions of substitution. The introduction of a negative charge in the stem region onverted the selectivity of the channel from weak anionic to more cationic. However, the troduction of a positive charge increased its selectivity to the anion. The degree of these alterations was inversely dependent on the channel radius at the position of the introduced harge (selectivity). As to the asymmetry of the conductance-voltage, the influence of the harge was more complex. The introduction of the negative charge in the stem region (the trans art of the pore) provoked a decrease. The intensity of these alterations depended on the radius, and on the type of free charge at the pore entrance. These results suggest that the free charge at surrounds the pore wall is responsible for the cation-anion selectivity of the channel. The istribution of the charges between the entrances is crucial for determining the asymmetry of e conductance-voltage curves. We hope that these results serve as a model for studies with other nanometric channels, in biological or planar lipid bilayer membranes or in iotechnological applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A exploração de petróleo está a cada dia em circunstâncias mais adversas, no que diz respeito à profundidade dos poços como também, em relação à fluidez do óleo. Os reservatórios de descobertas recentes não possuem energia própria para produzir ou os métodos convencionais não são eficientes para fazer com que esses reservatórios tenham uma vida útil elevada, devido a alterações das propriedades físico-químicas, como por exemplo a viscosidade, que torna o deslocamento do óleo pelos poros do reservatório até a superfície cada vez mais complexo. O presente trabalho tem como objetivo estudar a preparação, caracterização e a utilização de nanoemulsões obtidas a partir de sistemas microemulsionados, com e sem a presença de polímero. Esses sistemas foram aplicados como método químico de recuperação de petróleo, com o intuito de obter maior eficiência de volume de óleo deslocado. O interesse por esse tipo de sistema existe devido a sua baixa tensão superficial, o pequeno tamanho de gotícula e, principalmente, pelo baixo percentual de matéria ativa presente em sua composição. Os ensaios realizados para caracterizar esses sistemas foram: aspecto físico, medidas de tamanho de gotícula, índice de polidispersão, tensão superficial, pH e condutividade. Ensaios de reologia e de adsorção dos sistemas foram realizados com o objetivo de avaliar sua influencia na recuperação de petróleo. Os ensaios de recuperação foram realizados em um equipamento que simula as condições de um reservatório de petróleo, utilizando plugs de rocha arenito Botucatu. Esses plugs foram saturados com salmoura (KCl 2%) e com petróleo proveniente da Bacia Potiguar do campo de Ubarana. Após essas etapas foi realizada a recuperação convencional utilizando a salmoura e, por último, foi injetada, a nanoemulsão, como método de recuperação avançada. Os sistemas obtidos variaram de 0% à 0,4% de polímero. Os ensaios de tamanhos de partícula obtiveram como resultado uma variação de 9,22 a 14,8 nm, caracterizando que as nanoemulsões estão dentro da faixa de tamanho inerente a esse tipo de sistema. Para ensaios de tensão superficial os valores foram na faixa de 33,6 a 39,7 dynas/cm, valores semelhantes à microemulsões e bem abaixo da tensão superficial da água. Os resultados obtidos para os valores de pH e condutividade se mantiveram estáveis ao longo do tempo de armazenamento, essa avaliação indica estabilidade das nanoemulsões estudadas. O teste de recuperação avançada utilizando nanoemulsão com baixo percentual de matéria ativa obteve como resultado de eficiência de deslocamento 39,4%. Porém esse valor foi crescente, de acordo com o aumento do percentual de polímero na nanomeulsão. Os resultados de eficiência de deslocamento de petróleo estão diretamente relacionados com o aumento da viscosidade das nanoemulsões. A nanoemulsão V (0,4% polímero) é o sistema mais viscoso dentre os analisados, e obteve o maior percentual de óleo deslocado (76,7%), resultando na maior eficiência de deslocamento total (90%). Esse estudo mostrou o potencial de sistemas nanoemulsionados, com e sem polímeros, na recuperação avançada de petróleo. Eles apresentam algumas vantagens com relação a outros métodos de recuperação avançada, como: o baixo percentual de matéria ativa, baixo índice de adsorção do polímero, dissolvido em nanoemulsão, na rocha e alta eficiência de recuperação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two methodologies were proposed to obtain micro and macroporous chitosan membranes, using two different porogenic agents. The methodologies proved to be effective in control the porosity as well as the pore size. Thus, microporous membranes were obtained through the physical blend of chitosan and polyethylene oxide (PEO) on an 80:20 (m/m) ratio, respectively, followed by the partial PEO solubilization in water at 80 ◦C. Macroporous chitosan membranes with asymmetric morphology were obtained using SiO2 as the porogenic agent. In this case, chiotsan-silica ratios used were 1:1, 1:3 and 1:5 (m/m). Membranes characterization were carried out by SEM (scanning electronic microscopy), X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Thermal analysis (TG, DTG , DSC and DMTA). Permeability studies were performed using two model drugs: sodium sulfamerazine and sulfametoxipyridazine. By transmission FTIR it was possible to confirm the complete removal of SiO2. The SEM images confirmed the porous formation for both micro and macroporous membranes and also determined their respective sizes. By thermal analysis it was possible to show differences related with water sorption capacity as well as thermal stability for both membranes. DTG and DSC allowed evidencing the PEO presence on microporous membranes. The absorbance x time curves obtained on permeability tests for micro and macroporous membranes showed a linear behavior for both drugs in all range of concentration used. It was also observed, through P versus C curves, an increase in permeability of macroporous membranes according to the increase in porosity and also a decrease on P with increase in drug concentration. The influences of the drug molecular structure, as well as test temperatures were also evaluated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain a biofuel similar to mineral diesel, lanthanum-incorporated SBA- 15 nanostructured materials, LaSBA-15(pH), with different Si/La molar ratios (75, 50, 25), were synthesized in a two-steps hydrothermal procedure, with pH-adjusting of the synthesis gel at 6, and were used like catalytic solids in the buriti oil thermal catalytic cracking. These solids were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), infrared spectroscopy (FTIR), nitrogen porosimetry and ethanol dehydration, aiming to active sites identify. Taken together, the analyses indicated that the synthesis method has employed to obtain materials highly ordered mesostructures with large average pore sizes and high surface area, besides suggested that the lanthanum was incorporated in the SBA-15 both into the framework as well as within the mesopores. Catalytic dehydration of ethanol over the LaSBA-15(pH) products has shown that they have weak Lewis acid and basic functionalities, indicative of the presence of lanthanum oxide in these samples, especially on the La75SBA-15(pH) sample, which has presented the highest selectivity to ethylene. The buriti oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. One the other hand, OL coming from second ones, called green diesel (GD), have presented low acid index, particularly that one obtained from the thermal catalytic process realized over LaSBA-15(pH) samples. The acid sites presence in these samples, associated to their large average pore sizes and high surface areas, have allowed them, especially the La75SBA-15(pH), to present deoxygenating activity in the buriti oil thermal catalytic cracking, providing an oxygenates content reduction, particularly carboxylic acids, in the GD. Furthermore, the GD comes from the second liquid fraction obtained in the buriti oil thermal catalytic cracking over this latest solid sample has shown hydrocarbons composition and physic-chemical properties similar to that mineral diesel, beyond sulfur content low