65 resultados para Membrana de celulose
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Bacterial cellulose (BC) has a wide range of potential applications, namely as temporary substitute skin in the treatment of skin wounds, such as burns, ulcers and grafts. Surface properties determine the functional response of cells, an important factor for the successful development of biomaterials. This work evaluates the influence of bacterial cellulose surface treatment by plasma (BCP) on the cellular behavior and its genotoxicity potential. The modified surface was produced by plasma discharge in N2 and O2 atmosphere, and the roughness produced by ion bombardment characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Cell adhesion, viability and proliferation on BCP were analysed using crystal violet staining and the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium (MTT) method. Genotoxicity was evaluated using the comet and cytokinesis block micronucleus assay. The results show that the plasma treatment changed surface roughness, producing an ideal cell attachment, evidenced by more elongated cell morphology and improved proliferation. The excellent biocompatibility of BCP was confirmed by genotoxicity tests, which showed no significant DNA damage. The BCP has therefore great potential as a new artificial implant
Resumo:
Plodia interpunctella (Indian meal moth) is a cosmopolitan pest that attacks not only a wide range of stored grain as well other food products. Due to its economic importance several researches have focused in a method with ability to control this pest with few or no damage to the environment. The study of digestive enzymes inhibitors, lectins and chitin-binding proteins, has often been proposed as an alternative to reduce insect damage. In this study we report the major classes of digestive enzymes during larval growth in P. Interpunctella, being those proteinases actives at pH 9.5 and optimum temperature of 50 oC to both larvae of the 3rd instar and pre-pupal stage of development. In vitro and zymogram assays presented the effects of several inhibitors, such as SBTI, TLCK and PMSF to intestinal homogenate of 3rd instar larvae of 62%, 92% and 87% of inhibition and In pre-pupal stage of 87%, 62 % and 55% of inhibition, respectively. Zymograms showed inhibition of two low molecular masses protein bands by TLCK and that in presence of SBTI were retarded. These results are indicative of predominance of digestive serine proteinases in gut homogenate from Plodia interpunctella larvae. This serine proteinase was then used as a target to evaluate the effect of SBTI on larvae in in vivo assay. Effect of SBTI on mortality and larval mass was not observed at until 4% of concentration (w/w) in diets. Chitin, another target to insecticidal proteins, was observed by chemical method. Moreover, optic microscopy confirmed the presence of a peritrophic membrane. Established this target, in vivo effect of EvV, a chitin binding vicilin, evaluated during the larval development of P. interpunctella and was obtained a LD50 of 0,23% and WD50 of 0,27% to this protein. Mechanism of action was proposed through of the in vivo digestibility of EvV methodology. During the passage through the larval digestive tract was observed that EvV was susceptible to digestive enzymes and a reactive fragment, visualized by Western blotting, produced by digestion was recovered after dissociation of the peritrophic membrane. The bound of EvV to peritrophic membrane was confirmed by immunohystochemical assays that showed strong immunofluorescent signal of EvV-FITC binding and peritrophic membrane. These results are a indicative that vicilins could be utilized as potential insecticide to Plodia interpunctella and a control methods using EvV as bioinsecticide should be studied to reduce lost caused by storage insect pests
Resumo:
Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength
Resumo:
Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study
Resumo:
The alginates are copolymers of 1→4-linked β-D-mannuronic acid (M) and α-Lguluronic acid (G) residues that are arranjed in a block structure along a linear chain. Titanium dioxide, TiO2, is a ceramic material and can exist in three distinct crystallography forms: anatase, brookite and rutile. composites of organic and inorganic materials have better properties than the components alone. Thus, this study aims to synthesize, characterize and analyze the composite NaAlg-TiO2 in the form of powder and film. The synthesis of composite powders was performed using the sol-gel process and obtain the composite film was performed using the slow evaporation process, then the composites were analyzed by infrared spectroscopy, fluorescence x ray, thermal analysis, attenuated total reflection (ATR), x ray diffraction and impedance spectroscopy. The X ray diffraction patterns of composite powders show that with increasing calcination temperature, there were no complete transition of rutile-anatase crystalline phase, since at all temperatures studied (300, 500, 700, 900 and 1100ºC) were observed peaks of anatase phase. Thermal analysis shows that at 400°C caused the decomposition of sodium alginate in sodium carbonate and above 600°C, we observe an exothermic peak related to the decomposition of sodium carbonate and in the presence of titanium dioxide becomes sodium titanate. The XRD results confirm the formation of sodium carbonate at 700ºC and the formation sodium titanate in the temperature range 900-1100ºC. The sodium titanate influenced the electrical properties of the material, because with increasing temperature there was a decrease in conductivity, probably due to the creation of Ti vacancies, since the sodium can induce the reduction of surface Ti4+ ions into Ti3+ species. The infrared spectra of the composites in the form of powder and film showed a small shift in the bands compared to the spectrum of pure alginate, indicating that these shifts, even small ones, have evidence of miscibility between the polymer and ceramic material
Resumo:
This work has the main objective to obtain nano and microcrystals of cellulose, extracted from the pineapple leaf fibres (PALF), as reinforcement for the manufacture of biocomposite films with polymeric matrices of Poly(vinyl alcohol) (PVA) and Poly(lactic acid) (PLA). The polymer matrices and the nano and microcrystals of cellulose were characterised by means of TGA, FTIR and DSC. The analysis was performed on the pineapple leaves to identify the macro and micronutrients. The fibers of the leaves of the pineapple were extracted in a desfibradeira mechanical. The PALF extracted were washed to remove washable impurities and subsequently treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) in the removal of impurities, such as fat, grease, pectates, pectin and lignin. The processed PALF fibers were hydrolysed in sulfuric acid (H2SO4) at a concentration of 13.5 %, to obtain nano and microcrystals of cellulose. In the manufacture of biocomposite films, concentrations of cellulose, 0 %, 1 %, 3 %, 6 %, 9% and 12% were used as reinforcement to the matrices of PVA and PLA. The PVA was dissolved in distilled water at 80 ± 5 oC and the PLA was dissolved in dichloromethane at room temperature. The manufacture of biocompósitos in the form of films was carried out by "casting". Tests were carried out to study the water absorption by the films and mechanical test of resistance to traction according to ASTM D638-10 with a velocity of 50 mm/min.. Chi-square statistical test was used to check for the existence of significant differences in the level of 0.05: the lengths of the PALF, lengths of the nano and microcrystals of cellulose and the procedures used for the filtration using filter syringe of 0.2 μm or filtration and centrifugation. The hydrophilicity of biocompósitos was analysed by measuring the contact angle and the thickness of biocompósitos were compared as well as the results of tests of traction. Statistical T test - Student was also applied with the significance level (0.05). In biodegradation, Sturm test of standard D5209 was used. Nano and microcrystals of cellulose with lengths ranging from 7.33 nm to 186.17 nm were found. The PVA films showed average thicknesses of 0.153 μm and PLA 0.210 μm. There is a strong linear correlation directly proportional between the traction of the films of PVA and the concentration of cellulose in the films (composite) (0,7336), while the thickness of the film was correlated in 0.1404. Nano and microcrystals of cellulose and thickness together, correlated to 0.8740. While the correlation between the cellulose content and tensile strength was weak and inversely proportional (- 0,0057) and thickness in -0.2602, totaling -0,2659 in PLA films. This can be attributed to the nano and microcrystals of cellulose not fully adsorbed to the PLA matrix. In the comparison of the results of the traction of the two polymer matrices, the nano and microcrystals have helped in reducing the traction of the films (composite) of PLA. There was still the degradation of the film of PVA, within a period of 20 days, which was not seen in the PLA film, on the other hand, the observations made in the literature, the average time to start the degradation is above 60 days. What can be said that the films are biodegradable composites, with hydrophilicity and the nano and microcrystals of cellulose, contribute positively in the improvement of the results of polymer matrices used.
Resumo:
The sustainable use of waste resulting from the agribusiness is currently the focus of research, especially the sugar cane bagasse (BCA), being the lignocellulosic waste produced in greater volume in the Brazilian agribusiness, where the residual biomass has been applied in production energy and bioproducts. In this paper, pulp was produced in high purity from the (BCA) by pulping soda / anthraquinone and subsequent conversion to cellulose acetate. Commercial cellulose Avicel was used for comparison. The obtained cellulose acetate was homogeneous acetylation reaction by modifying the variables, the reaction time in hours (8, 12, 16, 20 and 24) and temperature in ° C (25 and 50). FTIR spectra showed characteristic bands identical to cellulosic materials, demonstrating the efficiency of separation by pulping. The characterization of cellulose acetate was obtained and by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG / DTG / DSC), scanning electron microscopy (SEM) and determining the degree of substitution (DS ) for the cellulose acetate to confirm the acetylation. The optimal reaction time for obtaining diacetates and triacetates, at both temperatures were 20 and 24 h. Cellulose acetate produced BCA presented GS between 2.57 and 2.7 at 25 ° C and 50 ° C GS obtained were 2.66 and 2.84, indicating the actual conversion of cellulose BCA of di- and triacetates. Comparative mode, commercial cellulose Avicel GS showed 2.78 and 2.76 at 25 ° C and 2.77 to 2.75 at 50 ° C. Data were collected in time of 20 h and 24 h, respectively. The best result was for the synthesis of cellulose acetate obtained from the BCA GS 2.84 to 50 ° C and 24 hours, being classified as cellulose triacetate, which showed superior result to that produced with the commercial ethyl cellulose Avicel, demonstrating converting potential of cellulose derived from a lignocellulosic residue (BCA), low cost, prospects of commercial use of cellulose acetate
Resumo:
Plodia interpunctella (Indian meal moth) is a cosmopolitan pest that attacks not only a wide range of stored grain as well other food products. Due to its economic importance several researches have focused in a method with ability to control this pest with few or no damage to the environment. The study of digestive enzymes inhibitors, lectins and chitin-binding proteins, has often been proposed as an alternative to reduce insect damage. In this study we report the major classes of digestive enzymes during larval growth in P. Interpunctella, being those proteinases actives at pH 9.5 and optimum temperature of 50 oC to both larvae of the 3rd instar and pre-pupal stage of development. In vitro and zymogram assays presented the effects of several inhibitors, such as SBTI, TLCK and PMSF to intestinal homogenate of 3rd instar larvae of 62%, 92% and 87% of inhibition and In pre-pupal stage of 87%, 62 % and 55% of inhibition, respectively. Zymograms showed inhibition of two low molecular masses protein bands by TLCK and that in presence of SBTI were retarded. These results are indicative of predominance of digestive serine proteinases in gut homogenate from Plodia interpunctella larvae. This serine proteinase was then used as a target to evaluate the effect of SBTI on larvae in in vivo assay. Effect of SBTI on mortality and larval mass was not observed at until 4% of concentration (w/w) in diets. Chitin, another target to insecticidal proteins, was observed by chemical method. Moreover, optic microscopy confirmed the presence of a peritrophic membrane. Established this target, in vivo effect of EvV, a chitin binding vicilin, evaluated during the larval development of P. interpunctella and was obtained a LD50 of 0,23% and WD50 of 0,27% to this protein. Mechanism of action was proposed through of the in vivo digestibility of EvV methodology. During the passage through the larval digestive tract was observed that EvV was susceptible to digestive enzymes and a reactive fragment, visualized by Western blotting, produced by digestion was recovered after dissociation of the peritrophic membrane. The bound of EvV to peritrophic membrane was confirmed by immunohystochemical assays that showed strong immunofluorescent signal of EvV-FITC binding and peritrophic membrane. These results are a indicative that vicilins could be utilized as potential insecticide to Plodia interpunctella and a control methods using EvV as bioinsecticide should be studied to reduce lost caused by storage insect pests
Resumo:
Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength
Resumo:
Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study
Resumo:
Objetivo: Avaliar o efeito da nicotina na cicatrização da camada musculoaponeurótica da parede abdominal. Métodos: Estudo experimental em que foram usados 16 ratos da raça Wistar pesando em média 210±8g, separados aleatoriamente em 2 grupos de 8. Nos animais do grupo A foi implantado disco de nicotina (Nicotinel Ò) na dose de 5mg/Kg de peso/dia no subcutâneo da região dorsal, trocado a cada dois dias, a partir do 5º dia antes da operação em que foi feita laparotomia mediana de 5 cm, até o 10o dia de observação. No grupo B (controle) foram usados discos de celulose com o mesmo diâmetro. Tubo de silicone multiperfurado foi implantado no subcutâneo a 1cm da lesão da parede abdominal. A camada musculoaponeurótica e a pele foram suturadas com fio de nylon 5-0. No 10º dia pós-operatório foi colhido 1ml de líquido seroso do tubo de silicone por punção percutânea para dosagem de pO2 e os animais receberam dose letal de anestésico. Foi ressecado um segmento da camada musculoaponeurótica com 2cm de largura para tensiometria, em seguida processado e corado em HE e tricrômico de Masson para análise quantitativa dos dados histopatológicos em sistema digitalizado. A análise estatística foi feita pelo ANOVA e teste Newman-Keuls, com significância 0,05. Resultados: No grupo A a pO2 do líquido tecidual atingiu o valor 17,75±3,4 mmHg e no grupo B (controle) a pO2 = 40,75±6,4 mmHg (p<0,01). A resistência à tensão apresentou o valor de 728,5±161,75gf no grupo A e 1241,6±232gf no grupo de controle (p<0,01), coincidindo com os achados da pO2. A densidade média dos elementos histopatológicos estudados foi de 105±17,1 nos animais do grupo A e 146,2±8,8 no grupo B (p<0,01). Conclusão: após avaliação da pO2 tecidual, tensiometria e histopatologia, concluiu-se que a nicotina por via subcutânea exerce efeito deletério sobre a cicatrização de lesões da parede abdominal de ratos
Resumo:
Methomyl (Lannate®) is an insecticide from the carbamate group, frequently used in pest control in various types of crops. This compound works inhibiting the activity of the enzyme acetylcholinesterase. The use of physicochemical and ecotoxicological analysis is the most efficient strategy for the correct characterization and control of residues of metomil. The main objectives of this study were to evaluate the acute toxicity of methomyl in 96 hours of exposure and, through a sublethal assay of 5 hours, to assess its effect on the activity of acetylcholinesterase present in brain and squeletic dorsal muscle of the Danio rerio fish. The results showed that the LC50-96 found to D. rerio was 3.4 mg/L and it was found through the average of four definitive tests. In vitro assays were used to test the inhibitory action of methomyl directly over soluble AChE, extracted from the squeletic dorsal muscle, with maximum inhibition of 68.57% to the insecticide concentrations of 0.2 mg/L. In sublethal tests with D. rerio, inhibitory effect of methomyl was found over the soluble form of AChE in the squeletic dorsal muscle, both in one and five hours of fish exposure to the insecticide. In both period, the average values of inhibition were around 61%. In the same condition, no significant inhibitory effect of methomyl soluble and membrane AChE of the D. rerio was observed in the 0.42, 0.85, 1.70 and 2.50 mg/L concentrations and in both times of fish exposure
Resumo:
-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)
Resumo:
The fruit fly Ceratitis capitata is considered the most destructive pest of the world fruitculture. Many pest management practices, mainly based on agrochemicals, have been developed to allow the world-wide commerce of fruit. Solutions to decrease the use of synthetic insecticides in agriculture are based on the development of new target-specific compounds which cause less damage to the environment, especially vegetal proteins with insecticidal effects. The aim of this work was to evaluate the deleterious effect of a purified vicilin of E. velutina (EvV) seeds to C. capitata larvae and adult insects and to investigate the mechanisms involved in these effects. EvV was purified, characterized and its deleterious effect was tested in bioassay systems. EvV mechanism of action was determined by immunodetection techniques and fluorescence localization in chitin structures that are present in C. capitata digestory system. EvV is a glycoprotein with affinity to chitin. Its molecular weight, of 216,57 kDa, was determined by gel filtration chromatography in FPLC system. Using SDS-PAGE, it was possible to observe EvV dissociation in two main subunits of 54,8 and 50,8 kDa. When it was submitted to eletrophoresis in native conditions, EvV presented only one band of acid characteristic. The WD50 and LD50 values found in the bioassays were 0,13% and 0,14% (w/w), respectively for the larvae. EvV deleterious effects were related to the binding to chitin structures presented in peritrophic membrane and gut epithelial cells, associated with its low digestibility in C. capitata digestive tract. The results described herein are the first demonstration of the larvicidal effects of plant protein on C. capitata larvae. EvV may be part of the pest management programs, in the toxic bait composition, or an alternative in plant improvement program
Resumo:
One Kunitz-type trypsin inhibitors (PmTI) was purified from Piptadenia moniliformis seeds, a tree of the sub-family Mimosoideae, by TCA precipitation, affinity chromatography on immobilized trypsin-Sepharose, DEAE cellulose (ion exchange) and Superose 12 (molecular exclusion) column FPLC/AKTA. The inhibitor has Mr of 25 kDa by SDS-PAGE and chromatography molecular exclusion. The N-terminal sequence of this inhibitor showed high homology with other family Kunitz inhibitors. This also stable variations in temperature and pH and showed a small decrease in its activity when incubated with DDT in the concentration of 100mM for 120 minutes. The inhibition of trypsin by PmTI was competitive, with Ki of 1.57 x10-11 M. The activity of trypsin was effectively inhibited by percentage of inhibition of 100%, among enzymes tested, was not detected inhibition for the bromelain, was weak inhibitor of pancreatic elastase (3.17% of inhibition) and inhibited by 76.42% elastase of neutrophils, and inhibited in a moderate, chymotrypsin and papain with percentage of inhibition of 42.96% and 23.10% respectively. In vitro assays against digestive proteinases from Lepidoptera, Diptera and Coleoptera pests were carried out. Several degrees of inhibition were found. For Anthonomus grandis and Ceratitis capitata the inhibition was 89.93% and 70.52%, respectively, and the enzymes of Zabrotes subfasciatus and Callosobruchus maculatus were inhibited by 5.96% and 9.41%, respectively, and the enzymes of Plodia. interpunctella and Castnia licus were inhibited by 59.94% and 23.67, respectively. In vivo assays, was observed reduction in the development of larvae in 4rd instar of C. capitata, when PmTI was added to the artificial diet, getting WD50 and LD50 of 0.30% and 0.33%, respectively. These results suggest that this inhibitor could be a strong candidate to plant management programs cross transgenic