5 resultados para Median Sedimentary Basin

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through an integrated approach, using litho, chrono and biostratigraphic data, the relative importance of climate variations and tectonics were recognized in rift sediments of the onshore Potiguar Basin, Northeast Brazil. Concepts of sequence stratigraphy were applied as a template to integrate sedimentological and geochemical data (oxygen isotopes), as well as quantitative palynologic methods to address and recognize the main depositional patterns produced in a rift basin. The main objective was to address the relative importance of climate changes and tectonics to the resultant stratigraphic architecture. The results of computer simulations of sedimentary basin fills of rift basins were quite useful to test working hypothesis and mimic the process of filling a half graben during a rift event. The studied section includes a neovalanginian-eobarremian (Lower Cretaceous) rift interval from the Pendência Formation, located in the southwestern portion of Umbuzeiro Graben, in the offshore Potiguar Basin. The depositional setting is interpreted as progradational deltaic system entering a lake from its flexural margin. Sismoestratigraphyc and well logs analyses allowed to interpret two regressive intervals (Green and Yellow Sequences), separated by a broad transgressive interval (Orange Sequence), known as the Livramento Shale. The depositional history encompass three stages: two tectonically active phases, during the deposition of the Green and Yellow Sequences, and a tectonically quiescent phase, during the deposition of the Orange Sequence. Paleoclimatic interpretation, based on quantitative palynology and geochemical data (��18O), suggests a tendency to arid conditions during the tectonically active phases and wet conditions during the tectonically quiescent phase. Stratigraphic modeling and backstripping techniques, supported by paleoclimatic/paleoecologic interpretations provide a powerful methodology to evaluate the tectonic and climatic controls on tectonic lakes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gravity inversion method is a mathematic process that can be used to estimate the basement relief of a sedimentary basin. However, the inverse problem in potential-field methods has neither a unique nor a stable solution, so additional information (other than gravity measurements) must be supplied by the interpreter to transform this problem into a well-posed one. This dissertation presents the application of a gravity inversion method to estimate the basement relief of the onshore Potiguar Basin. The density contrast between sediments and basament is assumed to be known and constant. The proposed methodology consists of discretizing the sedimentary layer into a grid of rectangular juxtaposed prisms whose thicknesses correspond to the depth to basement which is the parameter to be estimated. To stabilize the inversion I introduce constraints in accordance with the known geologic information. The method minimizes an objective function of the model that requires not only the model to be smooth and close to the seismic-derived model, which is used as a reference model, but also to honor well-log constraints. The latter are introduced through the use of logarithmic barrier terms in the objective function. The inversion process was applied in order to simulate different phases during the exploration development of a basin. The methodology consisted in applying the gravity inversion in distinct scenarios: the first one used only gravity data and a plain reference model; the second scenario was divided in two cases, we incorporated either borehole logs information or seismic model into the process. Finally I incorporated the basement depth generated by seismic interpretation into the inversion as a reference model and imposed depth constraint from boreholes using the primal logarithmic barrier method. As a result, the estimation of the basement relief in every scenario has satisfactorily reproduced the basin framework, and the incorporation of the constraints led to improve depth basement definition. The joint use of surface gravity data, seismic imaging and borehole logging information makes the process more robust and allows an improvement in the estimate, providing a result closer to the actual basement relief. In addition, I would like to remark that the result obtained in the first scenario already has provided a very coherent basement relief when compared to the known basin framework. This is significant information, when comparing the differences in the costs and environment impact related to gravimetric and seismic surveys and also the well drillings

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deformation bands are structures, developed in porous sandstones, that has small offsets and they are not shown on seismic section. The deformation bands of the pre and synrift sandstones of Araripe Basin were studied in outcrop, macroscopic and microscopic scales. The hierarchical, cinematic and spatial-geometric characteristics, and also the deformational mechanisms acting during its structural evolution were established too. In general, the mesoscopic scale observation allowed to discriminate deformation bands as singles or clusters in three main sets: NNE-SSW dextral; NE-SW normal (sometimes with strike-slip offset); and E-W sinistral; further a bed-parallel deformation bands as a local set. The microscopic characterization allowed to recognize the shearing and cataclastic character of such structures. Through the multi-scale study done in this work we verified that deformation bands analyzed were preferentially developed when sandstones under advanced stage of lithification. We also infer that the geometrical-spatial complexity of these bands, together with the presence of cataclastic matrix, can difficult the migration of fluids in reservoir rocks, resulting on their compartmentalization. Therefore, the study of deformation bands can aid researches about the structural evolution of sedimentary basin, as well as collaborate to understand the hydrodynamic behavior of reservoirs compartmented by these deformational structures

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tectonics activity on the southern border of Parnaíba Basin resulted in a wide range of brittle structures that affect siliciclastic sedimentary rocks. This tectonic activity and related faults, joints, and folds are poorly known. The main aims of this study were (1) to identify lineaments using several remotesensing systems, (2) to check how the interpretation based on these systems at several scales influence the identification of lineaments, and (3) to contribute to the knowledge of brittle tectonics in the southern border of the Parnaíba Basin. The integration of orbital and aerial systems allowed a multi-scale identification, classification, and quantification of lineaments. Maps of lineaments were elaborated in the following scales: 1:200,000 (SRTM Shuttle Radar Topographic Mission), 1:50,000 (Landsat 7 ETM+ satellite), 1:10,000 (aerial photographs) and 1:5,000 (Quickbird satellite). The classification of the features with structural significance allowed the determination of four structural sets: NW, NS, NE, and EW. They were usually identified in all remote-sensing systems. The NE-trending set was not easily identified in aerial photographs but was better visualized on images of medium-resolution systems (SRTM and Landsat 7 ETM+). The same behavior characterizes the NW-trending. The NS-and EW-trending sets were better identified on images from high-resolution systems (aerial photographs and Quickbird). The structural meaning of the lineaments was established after field work. The NEtrending set is associated with normal and strike-slip faults, including deformation bands. These are the oldest structures identified in the region and are related to the reactivation of Precambrian basement structures from the Transbrazilian Lineament. The NW-trending set represents strike-slip and subordinated normal faults. The high dispersion of this set suggests a more recent origin than the previous structures. The NW-trending set may be related to the Picos-Santa Inês Lineament. The NS-and EW-trending sets correspond to large joints (100 m 5 km long). The truncation relationships between these joint sets indicate that the EW-is older than the NS-trending set. The methodology developed by the present work is an excellent tool for the understanding of the regional and local tectonic structures in the Parnaíba basin. It helps the choice of the best remote-sensing system to identify brittle features in a poorly known sedimentary basin