4 resultados para Maximum modulus princple
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET
Resumo:
Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength
Resumo:
With the current growth in consumption of industrialized products and the resulting increase in garbage production, their adequate disposal has become one of the greatest challenges of modern society. The use of industrial solid residues as fillers in composite materials is an idea that emerges aiming at investigating alternatives for reusing these residues, and, at the same time, developing materials with superior properties. In this work, the influence of the addition of sand, diatomite, and industrial residues of polyester and EVA (ethylene vinyl acetate), on the mechanical properties of polymer matrix composites, was studied. The main objective was to evaluate the mechanical properties of the materials with the addition of recycled residue fillers, and compare to those of the pure polyester resin. Composite specimens were fabricated and tested for the evaluation of the flexural properties and Charpy impact resistance. After the mechanical tests, the fracture surface of the specimens was analyzed by scanning electron microscopy (SEM). The results indicate that some of the composites with fillers presented greater Young s modulus than the pure resin; in particular composites made with sand and diatomite, where the increase in modulus was about 168 %. The composites with polyester and EVA presented Young s modulus lower than the resin. Both strength and maximum strain were reduced when fillers were added. The impact resistance was reduced in all composites with fillers when compared to the pure resin, with the exception of the composites with EVA, where an increase of about 6 % was observed. Based on the mechanical tests, microscopy analyses and the compatibility of fillers with the polyester resin, the use of industrial solid residues in composites may be viable, considering that for each type of filler there will be a specific application
Resumo:
A technological alternative for the correct disposal of tires is the use in the construction of embankment with soil and shredded tires. The use of waste tires in tropical soils requires prior knowledge of the properties and limitations of these materials. In this work, the results of an experimental program was devised to characterize the behavior of mixtures of waste tires and a lateritic soil. The residue used in this study is classified as tire buffings with an average size of 1.4 mm. The laboratory program included testing of particle size analysis, Atterberg limits, compaction, direct shear tests, permeability and confined compression tests with pure soil, pure tire and the mixtures. Proportions of 0% (pure soil), 10%, 20%, 40%, 50 % and 100% (pure tire) by weight were used. For the confining stress levels used in the study, the presence of tire residue provided a considerable increase in shear strength of the mixture. The maximum shear strength was obtained for a residue content of 40% by weight. Permeability tests on samples of waste under a confining stress of 100 kPa showed that the permeability increases significantly with increasing residue content until a residue content of 20%. The increase in permeability after that value showed to be negligible. Confined compression tests showed that the soil mixed with tire residue becomes more compressible than the pure soil. The secant constrained modulus (Msec) for the same vertical stress decreases with increasing percentage of residue.