7 resultados para Maximal voluntary ventilation
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Background: Obesity impairment to the pulmonary function related to the magnitude of adiposity and is associated with excessive daytime sleepiness (EDS) and snoring, among others symptoms of respiratory disorders related to sleep. It is possible that obese individuals with excessive daytime sleepiness may make changes in lung function on spirometry monitored during the day as a consequence of fragmented sleep or episodes of nocturnal hypoventilation that cause respiratory and changes that can persist throughout the day. The combination of these findings alone sleepiness observed by subjective scales with pulmonary function in obese patients is unknown. Objective: To assess the influence of EDS and snoring on pulmonary function in morbidly obese and distinguish between different anthropometric markers, the snoring and sleepiness which the best predictors of spirometric function and respiratory muscle strength and endurance of these patients. Methods: We evaluated 40 morbidly obese markers on the anthropometric, spirometric respiratory variables, maximal inspiratory and expiratory pressures (MIP and MEP) and maximal voluntary ventilation (MVV) and the measured excessive daytime sleepiness (the Epworth sleepiness scale) and snoring (snoring scale of Stanford). The data were treated when the differences between the groups of obese patients with and without sleepiness, whereas the anthropometric variables, respiratory and snoring. Pearson's correlation was performed, and multiple regression analysis assessed the predictors of pulmonary function. For this we used the software SPSS 15.0 for windows and p <0.05. Results: 39 obese patients were included (28 women), age 36.92+11.97y, body mass index (BMI) 49.3+5.1kg/m², waist-hip ratio (WHR) 0.96+0.07 and neck circumference (NC) 44.1+4.2 cm. Spirometric values and respiratory pressures were up 80% of predicted values, except for endurance (MVV <80%). Obese with EDS have lower tidal volume. Positive correlation was observed between BMI and EDS, EDS and NC and between snoring and BMI, and negative correlation between EDS and tidal volume (TV), and between snoring and snoring FVC and FEV1. In linear regression the best predictor of pulmonary function was snoring, followed by NC. NC has more obese with higher strength (MEP, p = 0.031) and endurance (MVV p = 0.018) respiratory muscle. Conclusion: Obese with EDS tend to have lower TV. In addition, snoring and NC can better predict pulmonary function in obese when compared with other anthropometric markers or EDS. Obese patients with higher NC tend to have greater capacity for overall strength of respiratory muscles, but may have low muscle endurance
Resumo:
Background: Obesity may affect the respiratory system, causing changes in respiratory function and in the pulmonary volumes and flows. Objectives: To evaluate the influence of obesity in the movement of thoracoabdominal complex at rest and during maximal voluntary ventilation (MVV), and the contribution between the different compartments of this complex and the volume changes of chest wall between obese and non-obese patients. Materials and Methods: We studied 16 patients divided into two groups: the obese group (n = 8) and group non-obese (n = 8). The two groups were homogeneous in terms of spirometric characteristics (FVC mean: 4.97 ± 0.6 L - 92.91 ± 10.17% predicted, and 4.52 ± 0.6 L - 93.59 ± 8.05%), age 25.6 ± 5.0 and 26.8 ± 4.9 years, in non-obese and obese respectively. BMI was 24.93 ± 3.0 and 39.18 ± 4.3 kg/m2 in the groups investigated. All subjects performed breathing calm and slow and maneuver MVV, during registration for optoelectronic plethysmography. Statistical analysis: we used the unpaired t test and Mann-Whitney. Results: Obese individuals had a lower percentage contribution of the rib cage abdominal (RCa) during breathing at rest and VVM. The variation of end expiratory (EELV) and end inspiratory (EILV) lung volumes were lower in obese subjects. It has been found asynchrony and higher distortion between compartments of thoracoabdominal complex in obese subjects when compared to non-obese. Conclusions: Central obesity impairs the ventilation lung, reducing to adaptation efforts and increasing the ventilatory work
Resumo:
obesity affects rightly functional capacity diminishing the cardiovascular system efficiency and oxygen uptake (VO2). Field tests, such as, Incremental Shuttle Walking Test (ISWT) and Six Minute Walk Test (6MWT) has been employed as alternative of Cardiopulmonary Exercise Test (CPX), to functional assessing for conditions which transport of oxygen to peripheral is diminished. Nevertheless, the knowing about metabolic variables response in real time and it comparing among different maximal and submaximal tests in obese is absent. Aim: to compare cardiopulmonary, metabolic response during CPX, ISWT and 6MWT and to analyse it influence of adiposity markers in obese. Material e Method: crosssectional, prospective study. Obese included if: (BMI>30Kg/m2; FVC>80%), were assessed as clinical, anthropometric (BMI, body adiposity index-BAI, waist-WC, hip- HC and neck-NC circumferences) and spirometry (forced vital capacity-FVC, Forced expiratory volume-1°second-FEV1, maximal voluntary ventilation-MVV) variables. Obese performed the sequence of tests: CPX, ISWT and 6MWT. Throughout tests was assessed breath-by-breath by telemetry system (Cortex-Biophysik-Metamax3B) variables; oxygen uptake on peak of activity (VO2peak); carbon dioxide production (VCO2); Volume Expiratory (VE); ventilatory equivalents for VO2 (VE/VO2) and CO2 (VE/VCO2); respiratory exchange rate (RER) and perceived effort-Borg6-20). Results: 15 obese (10women) 39.4+10.1years, normal spirometry (%CVF=93.7+9.7) finished all test. They have BMI (43.5+6.6kg/m2) and different as %adiposity (BAI=50.0+10.5% and 48.8+16.9% respectively women and men). Difference of VO2ml/kg/min and %VO2 were finding between CPX (18.6+4.0) and 6MWT (13.2+2.5) but not between ISWT (15.4+2.9). Agreement was found for ISWT and CPX on VO2Peak (3.2ml/kg/min; 95%; IC-3.0 9.4) and %VO2 (16.4%). VCO2(l/min) confirms similarity in production for CPX (2.3+1.0) and ISWT (1.7+0.7) and difference for 6MWT (1.4+0.6). WC explains more the response of CPX and ISWT than other adiposity markers. Adiposity diminishes 3.2% duration of CPX. Conclusion: ISWT promotes similar metabolic and cardiovascular response than CPX in obese. It suggesting that ISWT could be useful and reliable to assess oxygen uptake and functional capacity in obese
Resumo:
The clinical importance of evaluating the respiratory muscles with a variety of tests has been proposed by several studies, once that the combination of several tests would allow a better diagnosis and therefore, a better clinical follow of disorders of the respiratory muscles. This study aimed to evaluate the feasibility of adapting a national electronic manovacuometer to measure the nasal inspiratory pressure (study 1) and analyze the level of load intensity of maximum voluntary ventilation, as well as the variables that may influence this maneuver in healthy subjects (study 2). We studied 20 healthy subjects by a random evaluation of two measures of SNIP in different equipments: a national and an imported. In study 2 it was analyzed the intensity of the load of MVV test, change in pressure developed during the maneuver, the possible differences between genders, and the correlations between the flow developed in the test and the result of MVV. In study 1 it was found the average for both measures of nasal inspiratory pressures: 125 ± 42.4 cmH2O for the imported equipment and 131.7 ± 28.7 cmH2O for the national one. Pearson analysis showed a significant correlation between the average, with a coefficient r = 0.63. The average values showed no significant differences evaluated by paired t test (p> 0.05). In the Bland-Altman analysis it was found a BIAS = 7 cmH2O, SD 32.9 and a confidence interval of - 57.5 cmH2O up to 71.5 cmH2O. In the second study it was found significant differences between the genders in the air volume moved, being higher in males 150.9 ± 13.1 l / min vs 118.5 ± 15.7 L / min for (p = 0.0002, 95% CI 44.85 to 20:05). Regarding the inspiratory and expiratory loading, they were significantly higher in men than in women, peak inspiratory pressure (34.7 ± 5.3 cmH2O vs 19.5 ± 4.2 cmH2O, 95% CI - 18.0 to -12.3, p <0.0001), peak expiratory (33.8 vs. 23.1 ± 5.9 cmH2O ± 5.4 cmH2O, 95% CI -17.1 to - 4.6, p <0.0001), and the delta pressure (59.7 ± 10 cmH2O vs 36.8 ± 8.3 cmH2O, 95% CI 14.5 to 31.2, p <0.0002). The Pearson correlation showed that the flow generated by the maneuver is strongly correlated with the delta-expiratory pressure / inspiratory (r2= 0.83,R = 0.91, 95%IC 0.72 a 0.97 e p< 0.0001).Through these results we suggest that the national electronic manovacuometer is feasible and safe to perform the sniff test in healthy subjects. For the MVV, there are differences between the genders in the intensity of pressure developed during the maneuver. We found a load intensity considered low during the MVV, and found a strong correlation between the flow generated in the test and the delta pressure expiratory / inspiratory
Resumo:
Introduction: Obesity shows changes in pulmonary function and respiratory mechanics, however, little is known regarding the prevalence of worsening respiratory function when considering the increase in central or peripheral adiposity or general obesity. Objectives: To analyze the association between anthropometric adiposity and decreased lung function in obese. Materials and Methods: Patients eligible for this study obese individuals (IMC≥30kg/m2) in pre-bariatric surgery and referred for Treatment Clinic of Obesity and Related Diseases, located at the University Hospital Onofre Lopes (HUOL), from October 2005 and July 2014. The evaluation included clinical information and measurement of anthropometric measures (body mass index (BMI), body fat index (BFI) and waist circumference (WC) and neck (NC)) and spirometric. The prevalence and analysis by Poisson regression was performed considering the following outcome variables: forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and Maximum Voluntary Ventilation (MVV) and as predictor variables were considered: BMI, IAC, WC and NC and as control variables: age, gender, smoking history and comorbidities (diabetes mellitus, dyslipidemia and hypertension). Statistical analysis was performed using Statistical Package for Social Sciences software (SPSS - version 20.0). Results: We analyzed 384 individuals, 75% women, mean BMI: 46.6 (± 8.7) kg/m2, IAC: 49.26 (± 9.48)%, WC: 130.84 (± 16.23) cm and NC: 42.3 (± 4.6) cm. The higher prevalence of FVC and FEV1 <80% was observed in individuals with NC above 42 cm, followed those with a BMI above 45 kg/m2. Multivariate analysis using Poisson regression showed as risk factors associated with FVC <80%, the variables: NC above 42 cm (odds ratio (OR) 2.41) and BMI over 45Kg/m2 (OR 1.71 ). As for FEV1 <80% predicted, all predictor variables were associated, with the largest odds presented by the NC (3.40). MVVV was not associated with any studied varaible. Conclusion: Individuals with NC above 42 cm had higher prevalence of reduced lung function and the NC was the measure with the highest association with reduced lung function in obese.
Resumo:
Aim : To evaluate and to standardize surface electromyography (sEMG) normalization procedures for respiratory muscles by comparing muscle activation during Maximal Voluntary Isometric Contraction (MVIC) and Maximal Respiratory Pressures (MIP, MEP and sniff test). Methods: Healthy subjects were evalua ted regarding demographics, spirometry and sEMG during the five maneuvers: sniff test, MIP , MEP and Maximal Voluntary Isometric C ontraction (MVIC) of RA, SCM and SC A . For electrode placement, skin was prepared with abrasion, followed by shaving in the foll owing regions for acquisition of el ectromyographic signals: (1) SC M: lower third of the distance between the mastoid process and t he sternoclavicular joint; (2) SC A : 5 cm to the right from the sternoclavicular joint and at this point, up to 2 cm; and (3 ) RA: the level of umbilicus, 4 cm to the right. In electromyographic variables analysis , the data normality was assessed by Shapiro - Wilk test. Comparisons among studied maneuvers were performed by Friedman Test and Dunn’s post - hoc for multiple comparisons a mong inspiratory maneuvers, and Mann Whitney test for expiratory maneuvers. Subgroups differences between genders were performed by Student's t test or Mann - Whitney test according to data normality. Results: 35 subjects participated in the study, b ut 5 we re excluded (BMI> 25 kg/ m²). Sample consisted of 30 subjects (1 5 women), mean age 27.3±7.43 years, BMI 22.2 ± 1.69 kg/m² and spirometric indices within normal limits. Specific MVIC for SCM, SCA and RA showed the highest RMS. When we grouped sample into gender we found no difference among RMS values for the studied SCM maneuvers, while for SCA, MVIC SCM / SCA was the one with the highest RMS and for RA, MVIC RA in men. Once considering women, MVIC SCM/SCA showed the highest RMS for SCM, SCA and MVIC RA showed t he highest value for RA. Conclusion: MVIC for SCM, SCA and RA muscles showed the highest RMS values. When comparing RMS between the studied groups, there was no significant difference between men and women.
Resumo:
The human respiratory system was so designed that would allow efficient ventilation, regardless of variations in the external environment that may hinder the act of breathing, such an act involves dozens of variables, among them we find the respiratory depression, which is nothing more than respiratory muscle strength. The pressures are widely used in several cases: Neuro-muscular; evolution of pulmonary dysfunction and a predictor for discontinuation of mechanical ventilation. Therefore it was proposed to carry out evaluations of these respiratory pressures for children and adolescents aged 10 to 16 years and propose a predictive equation that involves the anthropometric variables age (A, years), body mass (BM, kilograms) and height (H, meters) with maximal respiratory pressures (maximum inspiratory and expiratory pressure). Evaluations were performed in this age group of students in public and private schools of the Grande Natal , measurements were performed using the analogue manometer, were children and adolescents and their parents gave informed consent. 517 samples were taken, and 250 for males (M), 255 for females (F) and 12 were excluded according to our exclusion criteria. The sample was subdivided into three age groups (10-11, 12-13 and 14 to 16 years old). It was found through the student s t test (p ≤ 0.05) for all variables studied, children and male adolescents had higher means than females, except for the MC. For the correlation between the variables found significant correlation (p <0.05) among all the variables when analyzed as pairs except between MIP and height for females. The development of predictive equations (for p ≤ 0.05) based on three types of strategies adopted were restricted to two association between anthropometric variables isolated, resulting in: for males: MIP = -32.29 + (-2.11*A) + (-0.52*BM), MIP = 9.99 + (-0.36*BM) + (-49.40*H); MEP = 18.54 + 3.53*A + 0, 42*BM, MEP = -33.37 + 2.78*A + 52.18* H, MEP = -17.39 + 0.33*BM + 55.04*H; and, for females we find: MEP = 24.32 + 2.59 * A + 0.24*BM