3 resultados para Material science
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
There were studied the variation of the solar ultraviolet radiation (UVR) in four wavelengths (305 nm, 320 nm, 340 nm e 380 nm) and erythemic dose, measured in Natal RN Brazil, from January 2001 until December 2007, using the ground ultraviolet radiometer of the Instituto Nacional de Pesquisas Espaciais / Centro Regional do Nordeste INPE-CRN, fixed on the roof of the Laboratório de Variáveis Ambientais Tropiciais LAVAT-INPE-CRN. It was verified that the mean value of the UVR in the city reachs the HIGH index before 09h00 a.m. and VERY HIGH before 09h40 a.m.; it was also verified that, except in the months of June and July, in the other months of the year the UVR reachs the HIGH index before 10h00 a.m., despite of the recommendations broadcasting in the media about the safe time to people stay ashore on the beaches of the city. After 14h30 p.m., the UVR reachs the MODERATE index in any month of the year. These evidence are valid to all years of the period studied, i.e., 2001 to 2007. The year of 2004 presented the lower mean values of UVR indices, and the year of 2007 presented the higher mean values of UVR index. It was prove, by means of the analysis of variance (ANOVA), the variation in the four wavelengths and in the erythemic dose. Considering that the city has high indices of skin cancer and cataract, the results of the research may be use as a data source to studies that intend to support programs of public health. At the same time, the results of the research may be applied to material science and agriculture studies
Resumo:
It presents a new type of insulation for ductwork hot water, which can be used in solar systems for heating water, which consists of a composite of different compositions based on plaster, cement and EPS ground, palm and water. This composite has as its main features easy assembly and manufacturing processes and low cost. Comparative results will be presented on the tests of materials and thermal tubes proposed. Four formulations were used to manufacture tubes with three diameters 70, 65 and 42mm. It was also tested conventionally used for elastomeric foam insulation to 110 ° C, for a comparative analysis with the composite pipe insulator proposed. It will demonstrate that the cost of manufacturing of such tubes is competitive with alternative elastomeric foam tested, but results of the composite tube to the temperature range studied, are lower. Another drawback of the composite insulator tube is its large mass. It would be important to test such a composite for greater levels of temperature to a diagnostic technique competitive with conventionally used insulators. A positive factor of using the proposed composite-tube would be the recycling of EPS so damaging to the environment, representing an environmentally friendly application of science
Resumo:
Intelligent and functional Textile Materials have been widely developed and researched with the purpose of being used in several areas of science and technology. These fibrous materials require different chemical and physical properties to obtain a multifunctional material. With the advent of nanotechnology, the techniques developed, being used as essential tools to characterize these new materials qualitatively. Lately the application of micro and nanomaterials in textile substrates has been the objective of many studies, but many of these nanomaterials have not been optimized for their application, which has resulted in increased costs and environmental pollution, because there is still no satisfactory effluent treatment available for these nanomaterials. Soybean fiber has low adsorption for thermosensitive micro and nanocapsules due to their incompatibility of their surface charges. For this reason, in this work initially chitosan was synthesized to functionalise soybean fibres. Chitosan is a natural polyelectrolyte with a high density of positive charges, these fibres have negative charges as well as the micro/nanocápsules, for this reason the chitosan acts as auxiliary agent to cationize in order to fix the thermosensitive microcapsules in the textile substrate. Polyelectrolyte was characterized using particle size analyses and the measurement of zeta potential. For the morphological analysis scanning Electron Microscopy (SEM) and x-Ray Diffraction (XRD) and to study the thermal properties, thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Near Infrared Spectroscopy analysis in the Region of the Fourier Transform Infrared (FTIR), colourimetry using UV-VIS spectrum were simultaneously performed on the substrate. From the measurement of zeta potential and in the determination of the particle size, stability of electrostatic chitosan was observed around 31.55mV and 291.0 nm respectively. The result obtained with (GD) for chitosan extracted from shrimp was 70 %, which according to the literature survey can be considered as chitosan. To optimize the dyeing process a statistical software, Design expert was used. The surface functionalisation of textile substrate with 2% chitosan showed the best result of K/S, being the parameter used for the experimental design, in which this showed the best response of dyeing absorbance in the range of 2.624. It was noted that soy knitting dyed with the thermosensitive micro andnanocapsules property showed excellent washing solidity, which was observed after 25 home washes, and significant K/S values.