1 resultado para Markov additive processes
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (2)
- Aston University Research Archive (6)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (61)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (10)
- Biodiversity Heritage Library, United States (1)
- Brock University, Canada (10)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (84)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (31)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (109)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (101)
- Galway Mayo Institute of Technology, Ireland (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (16)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (8)
- Martin Luther Universitat Halle Wittenberg, Germany (18)
- Massachusetts Institute of Technology (6)
- Ministerio de Cultura, Spain (10)
- National Center for Biotechnology Information - NCBI (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (38)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (34)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (7)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (11)
- Universidad Politécnica de Madrid (2)
- Universidade do Minho (15)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (155)
- Université de Montréal (1)
- Université de Montréal, Canada (28)
- University of Michigan (2)
- University of Queensland eSpace - Australia (98)
- University of Southampton, United Kingdom (22)
- University of Washington (2)
Resumo:
In this work, we present our understanding about the article of Aksoy [1], which uses Markov chains to model the flow of intermittent rivers. Then, we executed an application of his model in order to generate data for intermittent streamflows, based on a data set of Brazilian streams. After that, we build a hidden Markov model as a proposed new approach to the problem of simulation of such flows. We used the Gamma distribution to simulate the increases and decreases in river flows, along with a two-state Markov chain. The motivation for us to use a hidden Markov model comes from the possibility of obtaining the same information that the Aksoy’s model provides, but using a single tool capable of treating the problem as a whole, and not through multiple independent processes