7 resultados para Mark-release-recapture
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Tropical environments often face strong seasonal variations in climate, such as alternate periods of dry and rain, that may often be important influence in the annual X the organisms lives. Here we assess how population dynamics of two butterfly species (Heliconius erato and Heliconius mepomene) respond to environmental and seasonal variations. A mark-release-recapture study carried out in an Atlantic forest reserve, 15 Km from Natal, Rio Grande do Norte, Brazil, for 3 years, during the dry and rainy season, with three visits weekly done. Information such as species, wing lenght, site of capture, pollen load and phenotype (number of spots) (in H. erato only) were noted for each capture. Seasonal variation exists in capture rates of the two species, with great capture rates during the rainy season. Despite finding differences in the mean density of individuals of the two species among the different collection areas, this difference was only significant between floodplain and central areas, and no influence of seasonality was observed in the mean density between the areas. Seasonality in wing size was only observed for H. erato, with larger wings during the rainy season. Females carried larger pollen loads than males both species, but species were similar. Only males differed seasonally, with larger pollen loads during the rainy season. The distribution of the number of wing spots did not vary between the dry and rainy seasons, and the number of spots in males and females was similar. Therefore, we conclude that there was a strong influence of seasonal variation in the population dynamic of the two Heliconius species, as well as in several aspects of their biology
Resumo:
(The Mark and Recapture Network: a Heliconius case study). The current pace of habitat destruction, especially in tropical landscapes, has increased the need for understanding minimum patch requirements and patch distance as tools for conserving species in forest remnants. Mark recapture and tagging studies have been instrumental in providing parameters for functional models. Because of their popularity, ease of manipulation and well known biology, butterflies have become model in studies of spatial structure. Yet, most studies on butterflies movement have focused on temperate species that live in open habitats, in which forest patches are barrier to movement. This study aimed to view and review data from mark-recapture as a network in two species of butterfly (Heliconius erato and Heliconius melpomene). A work of marking and recapture of the species was carried out in an Atlantic forest reserve located about 20km from the city of Natal (RN). Mark recapture studies were conducted in 3 weekly visits during January-February and July-August in 2007 and 2008. Captures were more common in two sections of the dirt road, with minimal collection in the forest trail. The spatial spread of captures was similar in the two species. Yet, distances between recaptures seem to be greater for Heliconius erato than for Heliconius melpomene. In addition, the erato network is more disconnected, suggesting that this specie has shorter traveling patches. Moving on to the network, both species have similar number of links (N) and unweighed vertices (L). However, melpomene has a weighed network 50% more connections than erato. These network metrics suggest that erato has more compartmentalized network and restricted movement than melpomene. Thus, erato has a larger number of disconnected components, nC, in the network, and a smaller network diameter. The frequency distribution of network connectivity for both species was better explained by a Power-law than by a random, Poissom distribution, showing that the Power-law provides a better fit than the Poisson for both species. Moreover, the Powerlaw erato is much better adjusted than in melpomene, which should be linked to the small movements that erato makes in the network
Resumo:
The caatinga is considered the only exclusively Brazilian biome, with a total area of 735.000km². It is estimated that about 59% of this area has already been removed and only 2% are protected in conservations units. The region is characteristic by strong seasonality and heterogeneity in their environments. This paper sets generate information on morphological and population patterns Lanio pilatus in two areas of caatinga of Estação Ecológica do Seridó (ESEC – Seridó), Serra Negra do Norte - RN. Data collection was performed in six phases between July 2012 and December 2014, covering the end of the dry and rainy seasons in the region. The captures were performed with nets and individuals captured were marked with metal rings and measured (weight, wing length, tail, tarsus, culmen and tip of the bill to nostril). Through these measures, we observed that only males of open area range in weight during the dry and rainy season, youngs were significantly lower for all parameters measured, and males were larger than females in three characteristics (weight, wing length and tail) in open area and only one (wing length) in the closed area. The population parameters were generated from the mark-capture-recapture technique by program MARK, using the techniques of robust design and CJS. The survival probability of detection and population estimates varied with time. Only individuals of open area fluctuated in their estimates during the study. Overall, the environment was a great mediator of results which increases the need for more studies on the life history of the species in the region.
Resumo:
(The Mark and Recapture Network: a Heliconius case study). The current pace of habitat destruction, especially in tropical landscapes, has increased the need for understanding minimum patch requirements and patch distance as tools for conserving species in forest remnants. Mark recapture and tagging studies have been instrumental in providing parameters for functional models. Because of their popularity, ease of manipulation and well known biology, butterflies have become model in studies of spatial structure. Yet, most studies on butterflies movement have focused on temperate species that live in open habitats, in which forest patches are barrier to movement. This study aimed to view and review data from mark-recapture as a network in two species of butterfly (Heliconius erato and Heliconius melpomene). A work of marking and recapture of the species was carried out in an Atlantic forest reserve located about 20km from the city of Natal (RN). Mark recapture studies were conducted in 3 weekly visits during January-February and July-August in 2007 and 2008. Captures were more common in two sections of the dirt road, with minimal collection in the forest trail. The spatial spread of captures was similar in the two species. Yet, distances between recaptures seem to be greater for Heliconius erato than for Heliconius melpomene. In addition, the erato network is more disconnected, suggesting that this specie has shorter traveling patches. Moving on to the network, both species have similar number of links (N) and unweighed vertices (L). However, melpomene has a weighed network 50% more connections than erato. These network metrics suggest that erato has more compartmentalized network and restricted movement than melpomene. Thus, erato has a larger number of disconnected components, nC, in the network, and a smaller network diameter. The frequency distribution of network connectivity for both species was better explained by a Power-law than by a random, Poissom distribution, showing that the Power-law provides a better fit than the Poisson for both species. Moreover, the Powerlaw erato is much better adjusted than in melpomene, which should be linked to the small movements that erato makes in the network
Resumo:
An organisms movement within and between habitats is an essential trait of life history, one that shapes population dynamics, communities and ecosystems in space and time. Since the ability to perceive and react to specific conditions varies greatly between organisms, different movement patterns are generated. These, in turn, will reflect the way species persist in the original habitat and surrounding patches. This study evaluated patterns of movement of frugivorous butterflies in order to estimate the connectivity of a landscape mosaic in an area of Atlantic Forest. For this purpose, we used the capture-mark-recapture method on butterflies trapped with fermented fruit bait in three distinct habitats. The first represents a typical Atlantic forest fragment, while the other two represent man-made matrix habitats. One contains a coconut plantation and the other a plantation of the exotic Acacia mangium species. Five traps were randomly placed in each landscape unit in areas of 40 x 40m. Using recapture data and relating it to distance between captures and habitat structure, I found that movement frequencies, both within and between landscape units were different for the analyzed species, suggesting that they do not interpret and react to the landscape in the same way. Thus this study was able to measure landscape functional connectivity. For most species, the exchange between forest and coconut plantations occurred with low frequency compared to exchanges between the forest and acacia plantations, which share more structural similarities. This seems to indicate that a matrix that is more similar to patches of native vegetation can shelter species, permit their movement and, consequently, contribute to the landscape connectivity
Resumo:
For a long time, we believed in the pattern that tropical and south hemisphere species have high survival. Nowadays results began to contradict this pattern, indicating the need for further studies. Despite the advanced state of the study of bird population parameters, little is known about their variation throughout the year and the factors affecting them. Reproduction, for example, is one factor that may alter adult survival rates, because during this process the breeding pair allocates resources to maintain itself to maintain offspring, making itself more susceptible to diseases and predation. The aim of this study was to estimate survival and population size of a Central and South America passerine, Tachyphonus rufus (Boddaert, 1783), testing hypotheses about the factors that define these parameters. We performed data collection between Nov/2010 and ago/2012 in 12 ha plot, in a fragment of Atlantic Forest in northeastern Brazil. We used capture-mark-recapture methods to generate estimates using Closed Design Robust model in the program MARK. We generated Multi-state models to test some assumptions inherent to Closed Robust Design. The influence of co-variables (time, rain and reproductive cycle) and the effect of transient individuals were measured. Capture, recapture and apparent survival parameters were defined by reproductive cycle, while temporary dispersal was influence by rain. The estimates showed a higher apparent survival during the non-breeding period (92% ± 1%) than during breeding (40% ± 9%), revealing a cost of reproduction and suggesting a trade-off between surviving and reproducing. The low annual survival observed (34%) did not corroborate the pattern of high rates expected for a tropical bird. The largest population size was estimated to be 56 individuals in Nov/11, explained by high recruitment of juveniles, while the lowest observed in May/12: 10 individuals, probably as a result of massive influx of competitor species. Results from this study add to the growing literature on life history of Neotropical species. We encourage studies like this especially in Brazil, where there are few information, and suggest that covariates related to habitat quality and environmental changes should be tested, so that we can generate increasingly reliable models
Resumo:
Four areas are known as of frequent usage by Guiana dolphins (Sotalia guianensis) in the south coast of Rio Grande do Norte state, northeast Brazil: Tabatinga, Pipa, Lagoa de Guaraíras and Baia Formosa. This extension of 40 km of shoreline is under increasing anthropogenic impacts due to continuous development of the coastal areas and vessel traffic. The objective of this study was to investigate aspects of population biology and habitat use of the population of Sotalia guianensis in the south coast of Rio Grande do Norte. It was applied the photo-identification technique and posterior methods of capture-recapture for population estimation (POPAN extension in MARK). The distribution, movement and site fidelity of the dolphins were analyzed trough the geographic information system (GIS) and group characteristics and behavior trough non-parametric statistics. Field work was conducted on board a 10m motor vessel from March 2008 to March 2009. Photo-identification effort was 329h with 113h of direct observation of the dolphins. The population estimatives for each area: Tabatinga: 75 (63-92); Pipa 105 (88-129); Lagoa de Guaraíras: 27 (18-54) e Baia Formosa: 112 (89-129) individuals. Total population estimative was: 223 (192 a 297). High site fidelity was detected for only part of the population (<15%) as low site fidelity and transients individuals were also detected (>20%). It was observed frequent movements between Tabatinga, Lagoa de Guaraíras and Pipa, but not Baía Formosa. This suggests a division in two communities along this shore extension: one in Pipa and other in Baía Formosa. Group size was small, most groups with up to 10 dolphins. The areas were use intensively, only in Lagoa de Guaraíras dolphins were not seen in all field trips. Lagoa de Guaraíras is an area used by small groups exclusively for foraging. In Tabatinga and Pipa dolphins concentrated close to the shore, in the inner sector of the area and the main activity is also foraging. Significant larger groups were seen in socializing behavior but there was no difference in group size between the inner and external sectors of the area. The presence of calves and juveniles were significant greater in the inner areas of Tabatinga and Pipa, confirming the hypothesis that these beaches are also used for parental care. In Baia Formosa dolphins concentrated in the outer sector and foraging was also predominant. Significant larger groups were seen in the outer sector, mainly engaged in mixed behaviors of travel/foraging, possibly in some kind of group foraging. Calves and juveniles were significant more present in the outer sector where group size was also larger. In general there was no difference in area usage and period of the day. Sotalia guianensis has characteristics that make the species vulnerable to human activities such as small population concentrated in patches of suitable habitats restrict to coastal areas. We hope that this study bring new information for the species and help for the adequate management of the area in order to assure the presence of the dolphins as well as its behavior pattern and gene flow betweencommunities.