2 resultados para Machine-tool industry.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to assess the Cleaner Production CP as corporate sustainable tool, through the multiple case studies within companies from Rio Grande do Norte State. In order to achieve this goal a research methodology approach was set. The initial stage of the research methodology was based on a literature review on which it was observed that the CP can be linked with corporate sustainable once it prevents pollution and reduces the operational risks among employees, community and environment. In addition, CP can useful for companies position within competitive position as well as being applied to process, products and services. In order to observe these factors, CP was used within food industry (Company 1), textile industry (Company 2) and in a car dealer (Company 3). Regarding the results, Company 1 changed its raw material as well as implementing housekeeping (control use of water, energy and condensed milk). In Company 2, it was observed the three levels of CP. In other words, housekeeping (e.g. cutting process and manipulation of chemical products), changing technology (high pressure washing machine) and internal and external recycling. In addition, Company 3 considered only level 3 external recycling. As consequence, it was observed that can be applied either within industry as well as service sector. Unfortunately, it was not possible to observe any social gains on a monetary basis. This is due to limitations of the CP methodology and study complexity. Therefore, it was observed improvements regarding to social, environmental and economic areas. Nevertheless, it is necessary more commitment from top level management in order to consider CP like effective sustainable tool

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formal methods and software testing are tools to obtain and control software quality. When used together, they provide mechanisms for software specification, verification and error detection. Even though formal methods allow software to be mathematically verified, they are not enough to assure that a system is free of faults, thus, software testing techniques are necessary to complement the process of verification and validation of a system. Model Based Testing techniques allow tests to be generated from other software artifacts such as specifications and abstract models. Using formal specifications as basis for test creation, we can generate better quality tests, because these specifications are usually precise and free of ambiguity. Fernanda Souza (2009) proposed a method to define test cases from B Method specifications. This method used information from the machine s invariant and the operation s precondition to define positive and negative test cases for an operation, using equivalent class partitioning and boundary value analysis based techniques. However, the method proposed in 2009 was not automated and had conceptual deficiencies like, for instance, it did not fit in a well defined coverage criteria classification. We started our work with a case study that applied the method in an example of B specification from the industry. Based in this case study we ve obtained subsidies to improve it. In our work we evolved the proposed method, rewriting it and adding characteristics to make it compatible with a test classification used by the community. We also improved the method to support specifications structured in different components, to use information from the operation s behavior on the test case generation process and to use new coverage criterias. Besides, we have implemented a tool to automate the method and we have submitted it to more complex case studies