2 resultados para MONOLAYERS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic order of bylayers composed by a ferromagnetic film (F) coupled with an antiferromagnetic film (AF) is studied. Piles of coupled monolayers describe the films and the interfilm coupling is described by an exchange interaction between the magnetic moments at the interface. The F has a cubic anisotropy while the AF has a uniaxial anisotropy. We analyze the effects of an external do magnetic field applied parallel to the interface. We consider the intralayer coupling is strong enough to keep parallel all moments of the monolayer an then they are described by one vector proportional to the magnetization of the layer. The interlayer coupling is represented by an exchange interaction between these vectors. The magnetic energy of the system is the sum of the exchange. Anisotropy and Zeeman energies and the equilibrium configuration is one that gives the absolute minimum of the total energy. The magnetization of the system is calculated and the influence of the external do field combined with the interfilm coupling and the unidirectional anisotropy is studied. Special attention is given to the region near of the transition fields. The torque equation is used to study dynamical behavior of these systems. We consider small oscillations around the equilibrium position and we negleet nonlinear terms to obtain the natural frequencies of the system. The dependence of the frequencies with the external do field and their behavior in the phase transition region is analized

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis comprises a theoretical study about the influence of the magnetocrystalline anisotropy on the static and dynamic magnetic properties of nanofilms: monolayers and trilayers coupled through the bilinear and biquadratic exchange fields, for situations in which the systems are grown in unusual [hkl] asymmetric directions. Using a theory based on a realistic phenomenological model for description of nanometric systems, we consider the total free magnetic energy including the Zeeman interaction, cubic and uniaxial anisotropies, demagnetizing and surface anysotropy energies, as well as the exchange terms. Numerical calculations are conducted by minimizing the total magnetic energy from the determination of equilibrium static configurations. We consider experimental parameters found in the literature to illustrate our results for Fe/Cr/Fe trilayer systems. In particular, a total of six different magnetic scenarios are analyzed for three regimens of exchange fields and the [211] and [321] asymmetric growth directions. After numerically minimize the total energy, we use the equilibrium configurations to calculate magnetization and magnetoresistance curves with the respective magnetic phases and corresponding critical fields. These results are also used to establish the boundary for occurrence of saturated states. Within the context of the spin waves, we solve the equation of motion for these systems in order to find the respective associated dispersion relations. The results show similar magnetization and magnetoresistance curves for both [211] and [321] growth scenarios, including an equivalent magnetic transition behavior. However, the combination of those peculiar symmetries and influence of the exchange energies results in attractive properties, including the generation of magnetic states as a function of the asymmetric degree imposed in the [hkl] growth orientations. There is also an increasing incompatibility between the values of saturation fields of magnetization and magnetoresistance for the cases in which a magnetic field acts along intermediate cubic anisotropic axes, particularly in the situations where the bilinear and biquadratic exchange fields are comparable. The dispersion relations and static results are consistent, the corresponding magnetic states are also present in both acoustic and optical modes. Furthermore, Goldstone excitations are also observed for that particular cases of a magnetic field acting in the intermediate axes, an effect related to transitions of second order and to the spontaneous symmetry breaking imposed by the combination of the biquadratic energy with the cubic and uniaxial anisotropies.